Advanced Modeling in R

Non-linear, Bayesian, and mixed effect methods

R. Condit, M. Ferrari Cenpat, Patagonia October 2012

1 Course overview

The course will cover several advanced statistical modeling methods using the programming language *R*, including maximum-likelihood, non-linear, Bayesian, and multi-level (hierarchical) methods as well as techniques for using data simulation to test models. The *R* function *lmer*, an accessible yet complex tool for advanced modeling, will be covered in detail. To establish a base for understanding multi-level models, some review of standard regression will be included, plus a session on fitting non-linear models with maximum likelihood.

During the first half of each session, I will explain methods and present examples of their use; in the second half, students will work on assignments using the same methods. Datasets will be provided, but students are encouraged to bring their own data as well. A course web site will provide sample code, data, and a list of key R functions. Students should be familiar with R: manipulating dataframes, graphing, and linear regression.

1.1 To apply

• To join, contact Alexandra Sapoznikow, Oficina de Vinculación Tecnológica, Centro Nacional Patagónico -Conicet

1.2 Schedule

- When: Five Sessions, 9:00-18:00, 9-13 Oct 2012
- Where: Salon Península, Cenpat, Puerto Madryn

2 Software required

• *R* base package

- *R* contributed packages *lme4*, *arm*, *coda*, *mvtnorm*, *date*, available at http://cran. r-project.org/
- *RStudio*, or other programming editor such as Geany or Notepad++ (NOT Wordpad NOT Notepad)
- CTFSRPackage from http://ctfs.arnarb.harvard.edu/Public/CTFSRPackage

3 Course web site

• http://ctfs.arnarb.harvard.edu/Public/Workshops/Cenpat

http://ctfs.arnarb.harvard.edu/Public/Workshops/Cenpat/outline. html, and outline.pdf

http://ctfs.arnarb.harvard.edu/Public/Workshops/Cenpat/assignments. html, and assignments.pdf

sample R datasets http://ctfs.arnarb.harvard.edu/Public/Workshops/
data

R scripts http://ctfs.arnarb.harvard.edu/Public/Workshops/Cenpat/
source

history or R commands I enter during the course http://ctfs.arnarb.harvard. edu/Public/Workshops/Cenpat/history

• Each will be updated regularly throughout the course

4 Books and other background material

- Bates' online book http://lme4.r-forge.r-project.org/
- Random vs. fixed effects http://andrewgelman.com/2005/01/why_i_dont_use/
- Gelman: http://www.amazon.com/Analysis-Regression-Multilevel-Hierarchical-Model dp/052168689X
- Bolker: http://www.amazon.com/Ecological-Models-Data-Benjamin-Bolker/ dp/0691125228/ref=sr_1_2?s=books&ie=UTF8&qid=1348667709&sr=1-2&keywords= Bolker
- Kruschke: http://www.amazon.com/Doing-Bayesian-Data-Analysis-Tutorial/ dp/0123814855/ref=pd_sim_b_2
- Carlin: http://www.amazon.com/Bayesian-Methods-Analysis-Edition-Statistical/ dp/1584886978/ref=pd_sim_b_4
- Albert: http://www.amazon.com/Bayesian-Computation-R-Use/dp/0387922970/ ref=pd_sim_b_5
- Robert: http://www.amazon.com/Introducing-Monte-Carlo-Methods-Use/dp/ 1441915753/ref=pd_sim_b_2

5 Contents and approximate scheduling (daily progress will depend on experience of the students

- Modeling with standard regression and maximum likelihood [day 1]
 - 1. Linear regression with lm (review)
 - Gaussian error
 - Residuals and statistics (coef, summary)
 - Data treemass: log(agb) vs. log(dbh)
 - Centering x in linear regression!

Use xCenter = x - mean(x)

- 2. Numerical estimation with optim
 - maximize likelihood vs. minimize sum of squares
 - alternate methods in optim (Nelder-Mead etc.)
 - comparing models with AIC
 - Non-linear models
- 3. Survival models with maximum likelihood [day 2 morning]
 - binomial error instead of Gaussian error
 - logistic function to describe data
- Data simulation [day 2 afternoon]
 - 1. Two purposes of simulation
 - Understand connection from Process -> Data
 - Test whether models work
 - 2. R's probability distribution functions
 - density and random draws (eg, dnorm and rnorm)
 - important distributions: normal, binomial, poisson, negative binomial
 - 3. Regression with error
 - 4. Multi-level regression
 - 5. Extra: Survival
- Multi-level models (mixed effect, hierarchical, random vs. fixed effects) [day 2-3]
 - 1. Why multi-level modeling?
 - 2. Limitation: linear (or transformed linear) with normal error
 - 3. Multi-level vs. standard regression
 - Bates Chap 4, Section 4.4; Gelman & Hill pp. 251-259
 - 4. Regression with one group using lmer
 - output of display
 - graphs using the coefficients
 - variable intercept, slope, or both
 - 5. Regression with two groups or two predictors x using lmer
 - output of display

- models with or without covariance
- group level predictor (see Gelman&Hill p. 265)
- graphs using the coefficients
- 6. Random or fixed?
 - Traditional
 - * Random: nuisance effects, unrepeatable (batch, plot)
 - * Fixed: permanent group, repeatable (sex
 - * Gray area: year? site?
 - Recent issues favoring multi-level approach
 - (ie, Gelman, who replaces 'random' with 'grouping')
 - * Is group-level variation an explicit research topic?
 - * Can different groups be thought of as similar?
 - * Can information on one group support other groups?
 - * Are some groups rare and thus needing support?
 - * Are there enough groups? (too few -> little evidence on group-level variation)
- Bayesian methods [day 4-5]
 - 1. Bayes rule and the posterior distribution
 - 2. Metropolis, the Gibbs sampler (MCMC)
 - a) Another method for fitting parameters
 - b) Automatically provides fully accurate confidence
 - c) Much more flexible modeling options (ie, non-linear with many parameters)
 - d) Any error distribution
 - e) Latent states or latent data
 - 3. Hierarchical modeling
 - 4. Limitations: long run time, complicated program
 - 5. Keys to your own program
 - a) Getting the correct likelihood functions, and this can be difficult in complex models
 - b) Preparing data structures to save all the data and likelihood
 - c) Looping through all the parameters and hyperparameters
 - d) Returning results
 - 6. Details
 - a) Parameter correlation, autocorrelation and poor convergence
 - b) Diagnostics (see coda package)
 - c) Fitting the covariance
 - d) Special cases where Metropolis not needed

6 Key R functions

- Data extraction
 - 1. subset
 - 2. apply
 - 3. tapply
 - 4. cut
 - 5. dim
 - 6. str
 - 7. names
 - 8. ifelse [R base package]
 - 9. IfElse [CTFSRPackage version]
- Graphics
 - 1. hist
 - 2. plot
 - 3. points
 - 4. line
 - 5. curve
 - 6. abline
 - 7. box
 - 8. axis
 - 9. X11
 - 10. dev.set
- Modeling
 - 1. summary
 - mean
 - median
 - sd
 - var
 - cor
 - CI [CTFSRPackage]
 - 2. model
 - lm glm lmer [lme4 package] coef summary fixef [arm package] ranef [arm package] display [arm package] dotplot [lattice package] xyplot [lattice package]

- Likelihood
 - 1. optimize
 - 2. optim
 - 3. metrop1step [in CTFSRPackage]
- Error functions and probability distributions
 - 1. dnorm is the standard
 - 2. dbinom is the standard for survival or occurrence (or similar)
 - 3. dlnorm
 - for abundances, whether integer or not (but usually not used in favor of log-transformation
 - good match for tree growth rates
 - but cannot handle zeroes
 - 4. dgamma is similar to log=normal
 - 5. dpois including zeroes (but does not handle much ecological data well)
 - for integer abundances
 - handles zeroes
 - however, close to Gaussian so not appropriate for much ecological data
 - 6. dnbinom
 - for integer abundances that are highly skewed
 - very common in ecology
 - R: prob=dnbinom(count,size=k,mu=mu)
 - size is 'clumping parameter'; mu is mean