Advanced Modeling in R

Non-linear, Bayesian, and mixed effect methods

R. Condit*
Smithsonian Tropical Research Institute, 7-9 May 2012

1 General organization

The course will cover several advanced statistical modeling methods using the programming language R, including maximum-likelihood, non-linear, Bayesian, and multi-level (hierarchical) methods as well as techniques for using data simulation to test models. The R function *lmer*, an accessible yet complex tool for advanced modeling, will be covered in detail. To establish a base for understanding multi-level models, some review of standard regression will be included, plus a session on fitting non-linear models with maximum likelihood.

During the first half of each session, I will explain methods and present examples of their use; in the second half, students will work on assignments using the same methods. Datasets will be provided, but students are encouraged to bring their own data as well. A course web site will provide sample code, data, and a list of key R functions. Students should be familiar with R: manipulating dataframes, graphing, and linear regression.

1.1 Applying

• Apply: Contact Liliana Londoño, Center for Paleobiology, STRI

1.2 Schedule

- When: Three sessions, 8:30-4:30, 7-9 May 2012
- Where: Tupper Training Room (Next to Small Meeting Room, below cafeteria)

2 Software requirements

I assume you will have laptops running R, that you know how to manipulate dataframes in R, and have some experience with graphing and simple summary statistics. I suspect you have

^{*}CTFS & SIGEO

already used the functions lm and (perhaps) glm, but in case you haven't, you will quickly learn them. The course will begin with those functions as a baseline for moving off into more advanced methods for fitting models. Please have the packages listed below installed and running beforehand, and I encourage you to get programming editor already installed before we start.

- R base package
- R contributed packages *lme4*, *arm*, *coda*, *mvtnorm*, *date*, available at http://cran.r-project.org/
- RStudio, or a programming editor such as Geany or equivalent (Notepad++; NOT Wordpad nor Notepad)
- CTFSRPackage from http://ctfs.arnarb.harvard.edu/Public/CTFSRPackage

3 Course web site

• http://ctfs.arnarb.harvard.edu/Public/Workshops/Tupper2012

```
outline.pdf and http://ctfs.arnarb.harvard.edu/Public/Workshops/Tupper2012/outline.html
```

assignments.pdf and http://ctfs.arnarb.harvard.edu/Public/Workshops/ Tupper2012/assignments.html

sample R datasets http://ctfs.arnarb.harvard.edu/Public/Workshops/Tupper2012/data

R scripts http://ctfs.arnarb.harvard.edu/Public/Workshops/Tupper2012/source

history of commands I enter http://ctfs.arnarb.harvard.edu/Public/Workshops/Tupper2012/history

• All will be updated regularly

4 Sources

- Bates' online book http://lme4.r-forge.r-project.org/
- Random vs. fixed effects http://andrewgelman.com/2005/01/why_i_dont_use/
- Gelman text (Amazon: http://www.amazon.com/Analysis-Regression-Multilevel-Hierarche dp/052168689X)
- Kruschke: http://www.amazon.com/Doing-Bayesian-Data-Analysis-Tutorial/dp/0123814855/ref=pd_sim_b_2
- Carlin: http://www.amazon.com/Bayesian-Methods-Analysis-Edition-Statistical/ dp/1584886978/ref=pd_sim_b_4
- Albert: http://www.amazon.com/Bayesian-Computation-R-Use/dp/0387922970/ ref=pd_sim_b_5
- Robert: http://www.amazon.com/Introducing-Monte-Carlo-Methods-Use/dp/ 1441915753/ref=pd_sim_b_2

5 Contents

- Modeling with standard regression and maximum likelihood [morning 1]
 - 1. Linear regression with lm (review)
 - Gaussian error
 - Residuals and statistics (coef, summary)
 - Data treemass: log(agb) vs. log(dbh)
 - Centering x in linear regression!
 Use xCenter = x mean(x)
 - 2. Numerical estimation with optim
 - maximize likelihood vs. minimize sum of squares
 - alternate methods in optim (Nelder-Mead etc.)
 - comparing models with AIC
 - Non-linear models
- Bayesian methods [afternoon 1, day 2]
 - 1. Bayes rule and the posterior distribution
 - 2. Metropolis, the Gibbs sampler (MCMC)
 - a) Another method for fitting parameters
 - b) Automatically provides fully accurate confidence
 - c) Much more flexible modeling options (ie, non-linear with many parameters)
 - d) Any error distribution
 - e) Latent states or latent data
 - 3. Hierarchical modeling
 - 4. Limitations: long run time, complicated program
 - 5. Keys to your own program
 - a) Getting the correct likelihood functions, and this can be difficult in complex models
 - b) Preparing data structures to save all the data and likelihood
 - c) Looping through all the parameters and hyperparameters
 - d) Returning results
 - 6. Details
 - a) Parameter correlation, autocorrelation and poor convergence
 - b) Diagnostics (see coda package)
 - c) Fitting the covariance
 - d) Special cases where Metropolis not needed
- Data simulation [not covered]
 - 1. Two purposes of simulation
 - Understand connection from Process -> Data
 - Test whether models work
 - 2. R's probability distribution functions
 - 3. Regression with error

- 4. Multi-level regression
- 5. Extra: Survival
- Multi-level models (mixed effect, hierarchical, random vs. fixed effects) [day 3]
 - 1. Why multi-level modeling?
 - 2. Limitation: linear (or transformed linear) with normal error
 - 3. Multi-level vs. standard regression Bates Chap 4, Section 4.4; Gelman & Hill pp. 251-259
 - 4. Regression with one group using lmer
 - output of display
 - graphs using the coefficients
 - variable intercept, slope, or both
 - 5. Regression with two groups or two predictors x using lmer
 - output of display
 - models with or without covariance
 - group level predictor (see Gelman&Hill p. 265)
 - graphs using the coefficients
 - 6. Random for fixed?
 - Traditional
 - * Random: nuisance effects, unrepeatable (batch, plot)
 - * Fixed: permanent group, repeatable (sex
 - * Gray area: year? site?
 - Recent issues favoring multi-level approach
 - (ie, Gelman, who replaces 'random' with 'grouping')
 - * Is group-level variation an explicit research topic?
 - * Can different groups be thought of as similar?
 - * Can information on one group support other groups?
 - * Are some groups rare and thus needing support?
 - * Are there enough groups? (too few -> little evidence on group-level variation)

6 Error functions

- dnorm is the standard
- dbinom is the standard for survival or occurrence (or similar)
- dlnorm
 - for abundances, whether integer or not (but usually not used in favor of logtransformation
 - good match for tree growth rates
 - but cannot handle zeroes
- dgamma is similar to log=normal
- dpois including zeroes (but does not handle much ecological data well)
 - for integer abundances
 - handles zeroes
 - however, close to Gaussian so not appropriate for much ecological data
- dnbinom
 - for integer abundances that are highly skewed
 - very common in ecology
 - R: prob=dnbinom(count,size=k,mu=mu)
 - size is 'clumping parameter'; mu is mean

7 R functions

- Data extraction
 - 1. subset
 - 2. apply
 - 3. tapply
 - 4. cut
 - 5. dim
 - 6. str
 - 7. names
 - 8. ifelse [R base package]
 - 9. IfElse [CTFSRPackage version]
- Graphics
 - 1. hist
 - 2. plot
 - 3. points
 - 4. line
 - 5. curve
 - 6. abline
 - 7. box

```
8. axis9. X1110. dev.set
```

• Modeling

```
1. summary
mean
median
sd
var
cor
CI [CTFSRPackage]
```

2. model

```
Im
glm
Imer [Ime4 package]
coef
summary
fixef [arm package]
ranef [arm package]
display [arm package]
dotplot [lattice package]
xyplot [lattice package]
```

• Probability distributions

1. PDFs

```
dnorm, rnorm, pnorm, qnorm
dbinom, rbinom, pbinom, qbinom
dlnorm etc.
dnbinom etc.
```

• Likelihood

- 1. optimize
- 2. optim
- 3. metrop1step [in CTFSRPackage]