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Summary

1. Metabolic scaling theory predicts that diameter growth rates of tree species are related to tree

diameter by a universal scaling law. This model has been criticised because it ignores the influ-

ence of competition for resources such as light on the scaling of demographic rates with size.

2. We here test whether scaling exponents of abundant tropical tree species comply with the pre-

diction of metabolic scaling theory and evaluate whether the scaling of growth with size depends

on light availability. Light reaching each individual tree was estimated from yearly vertical cen-

suses of canopy density, and a hierarchical Bayesian approach allowed quantifying confidence

intervals for scaling exponents and accounting for different sources of error.

3. We found no universal scaling relationship, and 50–70% of the species had scaling exponents

that significantly differed from the predicted value of 1 ⁄3. As would be expected if competition

for light were important, scaling exponents were >1 ⁄3 for the majority of species when all trees

were combined. However, the community average of scaling exponents was not significantly dif-

ferent from the predicted value of 1 ⁄3 when only considering individuals that grew under high-

light conditions.

4. These results support the hypothesis that the prediction of metabolic ecology for the scaling

of tree growth with size is only valid when competition for light is unimportant.

Key-words: allometric scaling, Barro Colorado Island, hierarchical Bayesian model, light com-

petition, metabolic scaling theory, Panama, tropical rainforest

Introduction

Metabolic theory of ecology combines principles of physics,

chemistry and biology to link metabolism and allometry of

individuals to population, community and ecosystem prop-

erties (West, Brown & Enquist 1997, 1999; Brown et al.

2004). Proponents of metabolic ecology theory claim that

its predictions apply equally to animals and plants, and

recent extensions of the theory have sought to explain forest

structure and dynamics from individual tree metabolism

and allometry (e.g. Enquist, West & Brown 2009; West,

Enquist & Brown 2009). It is debated, however, whether

this theory that neglects competition for light can be predic-

tive for structure and dynamics in uneven-aged closed-can-

opy forests where light is a limiting environmental resource

(e.g. Muller-Landau et al. 2006; Coomes & Allen 2007;

Coomes, Lines & Allen 2011).

The core prediction of metabolic ecology theory is that

metabolic rate, or gross photosynthetic rate (P) for plants,

scales with biomass (M) as P /M
3
4 (West, Brown & Enquist

1999). This prediction is based on the assumptions about the

structure of plants’ vascular networks and their hydraulic

resistance, which in turn leads to a scaling relationship of

D /M
3
8 between stem diameter at breast height (D) and M

(West, Brown & Enquist 1999). Enquist et al. (1999) further

assume that biomass growth rate is proportional to photosyn-

thetic rate, and it follows that tree diameter growth scales

with diameter as dD
dt / D

1
3.

Empirical support for this prediction is lacking because in

previous studies sample sizes were small (<100 individuals)

for the majority of tree species (Enquist et al. 1999; Coomes

& Allen 2009; Stark, Bentley & Enquist 2011). In the one case

where 56 species with >100 individuals were analysed, scal-

ing exponents were significantly different from 1 ⁄ 3 for the

majority of species (Russo,Wiser &Coomes 2007).

Muller-Landau et al. (2006) and Coomes & Allen (2009)

hypothesised that when competition for light is important,

scaling exponents should be>1 ⁄ 3 because trees receive more

light as they grow taller. This hypothesis has been confirmed

in a recent indirect test using site productivity as a proxy for*Corresponding author. E-mail: nadja.rueger@uni-leipzig.de
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the intensity of light competition. Scaling exponents of moun-

tain beech (Nothofagus solandri var. cliffortioides) were close

to the prediction in low-productivity environments, where

competition for light is assumed to beweak, and>1 ⁄ 3 in sites
with higher productivity, where competition for light is

assumed to be intense (Coomes, Lines & Allen 2011). How-

ever, no study to date has directly assessed whether scaling

exponents dependon light availabilitywithinmultiple species.

We use data for tropical tree species at Barro Colorado

Island (BCI), Panama, to test the prediction of metabolic

ecology for the scaling of growth with size within species as

well as the distribution of scaling exponents across the spe-

cies. We explicitly assess whether the scaling depends on light

availability. Light availability is a key limiting resource in

moist tropical forests (e.g. Denslow 1987; Denslow et al.

1990; King et al. 2005), and we use light estimates from yearly

censuses of vegetation in six height layers to compare scaling

exponents in low, intermediate and high light environments.

We further explicitly include light availability as a predictor

of tree growth, together with tree size, to assess the scaling of

growth separately for both covariates. In a previous study, we

demonstrated the effectiveness of a hierarchical Bayesian

model in quantifying species differences in the response of

growth to light (Rüger et al. 2011a). Here, we employ the

same approach to study growth-diameter allometry and pre-

dictions ofmetabolic theory.

Growth may slow down when allocation of resources to

reproduction starts (Enquist et al. 1999). Therefore, we

assessed growth scaling separately for trees below their esti-

mated reproductive threshold as well as for all trees pooled

irrespective of reproductive status. The Bayesian approach

allows quantifying confidence intervals for scaling exponents

and accounting for different sources of error (Ellison 2004;

Clark 2005; Clark et al. 2007). However, to assure strongest

results, we included only common species with ‡ 100 individ-

uals because parameter estimates for rare species would be

more strongly affected by parameter estimates for the other

species in the community.

Thus, we address all issues identified by Stark, Bentley &

Enquist (2011) as desirable for future evaluations of meta-

bolic ecology theory for demographic rates, namely the

incorporation of realistic error structures, consideration of

larger sample sizes and the application of hierarchical

Bayesian methods that allow for confidence interval

estimation on intraspecific and interspecific mean parameter

estimates.

Materials and methods

S T U D Y A R E A

We analysed data from a 50-ha forest census plot on BCI, Panama

(9�9¢N, 79�51¢W). BCI is a 1567-ha island in the Panama Canal cov-

ered with tropical lowland moist forest. The plot consists of 48 ha of

undisturbed old-growth forest and 2 ha of secondary forest about

100 years old (Foster & Brokaw 1982). The climate on BCI is warm

throughout the year, but rainfall is seasonal with most of the

2500 mm falling during the wet season from April to November

(Windsor 1990; Windsor, Rand & Rand 1990). Elevation of the plot

is 120–155 m a.s.l. (Hubbell & Foster 1983). Detailed descriptions of

flora, fauna, geology and climate can be found in Croat (1978), Leigh,

Rand&Windsor (1982) and Leigh (1999).

G R O W T H D A T A

All free-standing woody individuals ‡1 cm diameter at breast height

(dbh) were mapped, identified to species and measured in 1981–1983,

1985, and every 5 years thereafter (http://ctfs.arnarb.harvard.edu/

webatlas/datasets/bci/; Condit 1998; Hubbell & Foster 1983). Here,

we use the census intervals from 1985 to 1990 and 1990 to 1995

(because these are the only census intervals with consistent canopy

census data) and determined annual dbh growth rate (mm year)1).

We discarded cases where a tree survived but its stemwasmeasured

at a different height, or where one stem broke, so a resprouted stem of

the same tree was measured.We excluded extreme outliers: stems that

grew >75 mm year)1 or shrunk >25% of their initial dbh. Smaller

negative growth observations because of dbhmeasurement error were

included (see Estimation of Measurement Error). Owing to their lack

of secondary growth, we excluded palm species. Because dbh values

were rounded down to the nearest 5 mm for all stems <55 mm in

1985 but not in 1990, it was necessary to round 1990 dbh values below

55 mm down as well before calculating growth rates for the first cen-

sus interval. Rounding down may bias growth estimates of small

stems, but Condit, Hubbell & Foster (1993) showed that the bias was

minimal. To avoid edge effects of the light availability calculation (see

below), we excluded all individuals within 20 m of any edge of the

plot.

Although the prediction of metabolic scaling applies to instanta-

neous growth, we used annualised growth rates from a 5-year census

interval to calculate scaling exponents. We checked for a potential

bias this may introduce by numerical integration of the growthmodel

using species’ parameters estimated from the hierarchical Bayesian

model (see below). Scaling exponents calculated from 5-year intervals

of simulated growth differed by an average (across species) of 0Æ005
from the true (instantaneous) scaling exponents; no species had a dif-

ference >0Æ02. These small differences indicate that using growth

rates from 5-year intervals instead of instantaneous growth rates does

not considerably bias our results.

We evaluated the prediction of metabolic ecology for two sub-

sets of the data: (i) for trees smaller than the reproductive thresh-

old (non-reproductive) and (ii) for all individuals pooled

irrespective of reproductive status. We attempted the analyses

when only trees larger than the reproductive threshold were

included, but few species had large enough sample sizes to draw

conclusions, so we do not present results (see Table S1,

Appendix S1 in Supporting Information). Reproductive size was

estimated after many years of observation by R. B. Foster

(personal communication) and later confirmed by quantitative eval-

uation in a subset of the species (Wright et al. 2005). To cover a

reasonable dbh range (Coomes, Lines & Allen 2011), we only

included species that become reproductive at a dbh ‡15 cm in the

subset of non-reproductive trees and species with a maximum dbh

‡15 cm when all trees were analysed.

We included only species with ‡100 individuals that met the size

criteria. The non-reproductive subset had 47 species (42 234 trees)

and 46 species (43 588 trees) in the two census intervals, respectively,

and when all trees were pooled, there were 86 species (92 138 and

96 511 trees). Sample sizes and dbh ranges of all data subsets (includ-

ing the subset of reproductive trees) are given in the Supporting Infor-

mation (see Table S1).
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E ST I M A T I O N O F L I G H T A V AI L A B I L I T Y

We used annual canopy census data to produce an index of the

amount of light reaching any point in the forest. The censuses were

conducted from 1983 to 1996, except for 1994. The canopy census

recorded the presence ⁄ absence of vegetation in six height intervals

(0–2, 2–5, 5–10, 10–20, 20–30 and ‡30 m) every 5 m across the 50 ha.

If vegetation was present in a height interval, we assume that it casts

shade below exactly aswould a flat circle of diameter 5 mplaced at the

vertical midpoint of the height interval. For each tree, we calculated a

shade index as a weighted sum of vegetation located above the tree

and £20 m away. Weighting was proportional to the section of sky

that is obscured by the vegetation accounting for distance from focal

tree and angle (Rüger et al. 2011b). The height of each tree was esti-

mated based on species-specific allometric equations for about 2 ⁄ 3 of
the species; for the remaining species, an overall equation was used

(Chave et al. 2003).We converted this measure of shading to an esti-

mate of light availability by comparing the distribution of shading at

2 m height to a published distribution of irradiance measured 1 m

above the ground (seeWirth,Weber&Ryel 2001;Rüger et al. 2011b).

Even though dbh and the light estimate are strongly correlated

(r2 = 0Æ67), there are many observations of small trees receiving high

light and of larger trees receiving low light (see Fig. S1 in Supporting

Information). This allows us to separate the effects of the two vari-

ables. When Akaike Information Criterion (AIC) was used to com-

pare models including only dbh or dbh and light as predictors of

growth, for 40 of 46 species, the model including dbh and light per-

formed better (lower AIC) than the model only including dbh (for 35

species,DAICwas ‡2; for 25 species, it was ‡10).

E S T I M A T I O N O F M E A S U R E M E N T E R R O R

To estimate the error of dbh measurements, in 1995, 2000 and 2005

double-blind remeasurements of 1562 randomly chosen trees (dbh

range 1–96 cm) were performed less than 30 days apart.Wemodelled

the discrepancy assuming there are two types of error: routine error

caused by slightly different placement of the callipers or tapemeasure,

and large error caused bymissing a decimal place or recording a num-

ber with the wrong tree. A Bayesian approach allows an estimate of

the ‘true’ dbh (truedbh) of those 1562 trees given two observed dbhs

(obsdbh), assuming no growth betweenmeasurements:

obsdbh � truedbh �ð1� fÞNðl¼ 0; r¼ SD1Þþ fNðl¼ 0; r¼ SD2Þ

(Chave et al. 2004). The first Gaussian describes routine errors,

assuming they are proportional to the dbh of the tree, SD1 =

sda + sdb · dbh. The second Gaussian (SD2) covers large errors

that are independent of dbh and occur a fraction f of the time.

Errorswerebestfitwithsda = 0Æ927 mm(SDoftheposteriordistri-

bution was 0Æ024 mm), sdb = 0Æ0038 mm)1 (SD = 0Æ00036 mm)1),

SD2 = 25Æ6 mm (SD = 2Æ49 mm) and f = 2Æ76% (SD = 0Æ39%).

Thismeans that a100-mmtree is subject to1Æ3-mmroutine error,while

2Æ76% of the time, it will be badly mismeasured, with an error of

26 mm.Growth calculations involve two dbhmeasurements; thus, the

variance of growth error is twice the variance of measurement error.

The posterior distributions of error parameters sda, sdb, SD2 and f

enterasfixedpriors inthehierarchicalBayesianmodel.

G R O W T H M O D E L

To determine the scaling of growth with dbh, we modelled growth as

a power function (linear log–log relationship) of dbh for all subsets of

the data (see Growth Data). We assessed whether the scaling of

growth with dbh depends on light availability in two ways. First, we

controlled for light availability by including light as a second predic-

tor. Second, we calculated growth-dbh scaling separately for individ-

uals growing in different light environments. We split individuals into

three light classes that approximately correspond to terciles of light

availability (<4%, 4–8%, ‡8%of above-canopy irradiance). In these

light-class analyses, we only included species that had at least 50 indi-

viduals in each light class.

In a hierarchical Bayesian model (Gelman & Hill 2007), we pre-

dicted growth of individual i (predi) as a power function given dbh or

dbh and light,

log predið Þ ¼ aj þ bj log dbhið Þ;

or

log predið Þ ¼ aj þ bjlog dbhið Þ þ cj log lightið Þ;

whereparameter aj describes the mean growth rate, bj the size effect on

growth and cj the light effect on growth of species j (Rüger et al.

2011a).

Variation of growth at a given dbh and light availability was mod-

elled using a lognormal distribution (process error, rp)

truei � logN predi;rp

� �
:

where truei is the estimated true growth rate of tree i. The process

error (rp) is estimated for each species. Using a lognormal distribu-

tion, the process error automatically scales linearly with predicted

growth (e.g. Kerkhoff & Enquist 2009).

Data enter our model as the observed annual dbh growth of indi-

vidual i (obsi, mm year)1), which is assumed to be subject to measure-

ment error as described above. The likelihood to observe obsi is

determined as:

PðobsiÞ ¼ ð1� fÞN l¼ truei;r¼
SD1

inti

� �
� fN l¼ truei;r¼

SD2

inti

� �
;

with SD1 describing the size-dependent error component and SD2 the

size-independent error component. Standard deviations have to be

adjusted to the time period elapsed between the two dbh measure-

ments of the tree (inti) from which the annual growth rate has been

calculated.

To describe the variation of aj, bj and cj across the species, we

defined a hyperdistribution for each parameter. The specific type of

distribution was chosen based on model runs without hyperdistribu-

tions (i.e. estimation of the posterior distributions for each species

independently of the other species), which revealed that all model

parameters were approximately normally distributed across the com-

munity. Thus, we used normal hyperdistributions for a, b and c, with

hyperparameters la, lb and lc describing the community-wide means

and ra, rb and rc measuring the between-species variation. As we did

not have prior knowledge, we used non-informative flat priors for

these parameters:

la, lb, lc�Uniform ()10, 10),
ra, rb, rc�Uniform (0, 2).

The process error (rp) was assumed to vary lognormally across the

community with hyperparameters lh and rh. Priors for both parame-

ters were

lh, rh�Uniform (0Æ001, 100).
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The runs without hyperdistributions also revealed that estimates of

all parameters were largely determined by the data because we did not

include species with<100 individuals.

M O D E L I M P L E M EN T A T I O N AN D D I A G N O S T I C S

Posterior distributions of the parameters of the growth models, true

growth of each individual tree and process error were obtained using

a Markov chain Monte Carlo (MCMC) method that is a hybrid of

the Metropolis–Hastings algorithm and the Gibbs sampler (Gelman

et al. 1995; Condit et al. 2006). Parameter values are sequentially

updated as in the Gibbs sampler, and acceptance depends on the like-

lihood ratios as in the Metropolis–Hastings algorithm. The proposal

distribution is a normal distribution centred on the current value of

the given parameter. The step width for each parameter, that is, the

standard deviation of the proposal distribution, is constantly adjusted

during the burn-in period in such a way that acceptance rate is kept

around 0Æ25 (Gelman et al. 1995). To speed up the convergence of the

Gibbs sampler, we weakened the correlation of intercepts and coeffi-

cients by centring the dbh data onmean log(dbh) for each species and

the light data on 5% light.

We monitored convergence by running two chains with different

initial values and used the Gelman and Rubin’s convergence diagnos-

tics and a value of 1Æ1 to detect convergence of individual parameter

estimates (Gelman & Rubin 1992; Gelman et al. 1995). We used a

burn-in period of 5000 iterations, and an additional 10 000 iterations

were used for analysis. From the posterior distributions, we computed

the mean and 95% credible intervals (CI) of all model parameters. All

analyses were carried out using the software package R version 2.11.1

(RDevelopment Core Team 2010).

Results

Based on visual inspection, the power function was a rea-

sonable description of size dependence of growth, except for

a few species where growth showed a hump-shaped pattern

when all individuals were analysed irrespective of reproduc-

tive status (see Fig. S2 in Supporting Information).

When only dbh was used as a predictor of growth, the com-

munity-wide average of the distribution of scaling exponents

(lb) was significantly >1 ⁄ 3 for non-reproductive trees and

when all trees were combined (Table 1, Fig. 1a, Appen-

dix S1). Species-level scaling ranged from )0Æ2 to 1Æ5 (Fig. 1a,
Table S1). In both census intervals and for both data subsets,

fewer than half the species had scaling exponents consistent

with the prediction (Table 2).

When light was included as an additional predictor of

growth, lb was significantly less than 1 ⁄ 3 for both subsets of

trees (Table 1, Fig. 1b). The number of species that con-

formed to the prediction increased for the non-reproductive

trees but decreased when all trees were analysed (Table 2).

Comparing the coefficients of the models with and without

light, the dbh exponent of the model without light approxi-

mately equals the sum of the exponents of dbh and light of

the model including light (Fig. 2, Appendix S1). Parameter

estimates of all growth models and data subsets are given in

the Supporting Information (Table S1).

When individuals were split into classes of low, intermedi-

ate and high light availability, the scaling exponent was high-

est at high-light availability (Fig. 3). The 95% CIs of the

community average of the scaling exponent included 1 ⁄ 3 only
in the high-light category (>8% light) for non-reproductive

trees in the first census interval and when all trees were analy-

sed in both census intervals (Table 1).

Discussion

By studying a large number of species with a rigorous model-

ling approach to account for species variation and measure-

ment error, we conclude first that species vary significantly in

growth-size scaling, so there is clearly not yet a universal the-

ory to account for every species (e.g. Russo, Wiser & Coomes

2007). Moreover, we find that the predicted exponent of 1 ⁄ 3
is supported in fewer than half of the species and that the

Table 1. Community-wide mean (lb) and SD (rb) of the scaling exponent of dbh (b) for different data sets and growth models ()L, model not

including light;+L,model including light)

Model Light class

1985–1990 1990–1995

Mean* SD Mean* SD

Non-reproductive trees

)L All 0Æ52 (0Æ43, 0Æ60) 0Æ29 (0Æ22, 0Æ36) 0Æ62 (0Æ52, 0Æ72) 0Æ31 (0Æ25, 0Æ39)
)L <4% 0Æ07 ()0Æ03, 0Æ16) 0Æ20 (0Æ11, 0Æ31) 0Æ12 (0Æ04, 0Æ20) 0Æ18 (0Æ10, 0Æ27)
)L 4–8% 0Æ14 (0Æ01, 0Æ26) 0Æ27 (0Æ18, 0Æ39) 0Æ16 (0Æ03, 0Æ28) 0Æ32 (0Æ21, 0Æ43)
)L >8% 0Æ44 (0Æ31, 0Æ57) 0Æ35 (0Æ24, 0Æ46) 0Æ55 (0Æ40, 0Æ71) 0Æ39 (0Æ29, 0Æ52)
+L All 0Æ07 ()0Æ04, 0Æ17) 0Æ33 (0Æ25, 0Æ41) 0Æ18 (0Æ07, 0Æ28) 0Æ34 (0Æ26, 0Æ43)

All trees

)L All 0Æ42 (0Æ37, 0Æ48) 0Æ25 (0Æ21, 0Æ29) 0Æ47 (0Æ41, 0Æ52) 0Æ27 (0Æ23, 0Æ32)
)L <4% 0Æ10 (0Æ04, 0Æ17) 0Æ20 (0Æ14, 0Æ26) 0Æ15 (0Æ08, 0Æ22) 0Æ22 (0Æ16, 0Æ29)
)L 4–8% 0Æ10 (0Æ03, 0Æ20) 0Æ27 (0Æ20, 0Æ34) 0Æ17 (0Æ08, 0Æ26) 0Æ30 (0Æ22, 0Æ37)
)L >8% 0Æ27 (0Æ17, 0Æ39) 0Æ37 (0Æ31, 0Æ45) 0Æ32 (0Æ22, 0Æ43) 0Æ39 (0Æ31, 0Æ47)
+L All 0Æ02 ()0Æ05, 0Æ09) 0Æ30 (0Æ25, 0Æ36) 0Æ07 (0Æ00, 0Æ15) 0Æ32 (0Æ27, 0Æ38)

Values in brackets indicate 95% credible intervals of parameter estimates.

*Means that are not significantly different from the predicted value of 1 ⁄ 3 are highlighted in bold.
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discrepancy is partly accounted for by changes in light avail-

ability (see below).

The subsets of the data best conforming to the prediction

of metabolic ecology included individuals least affected by

competition for light (e.g. Coomes & Allen 2007): trees that

grow in relatively high light. This supports a recent analysis

of Coomes, Lines & Allen (2011) reporting that scaling expo-

nents were close to the prediction of metabolic ecology in

low-productivity sites, where competition for light is thought

to be unimportant, and greater than the prediction of meta-

bolic ecology in high-productivity sites.

As hypothesised by Muller-Landau et al. (2006) and

Coomes & Allen (2009), we also find that scaling exponents

were >1 ⁄ 3 in the model without light. One explanation

offered by those authors is that trees gradually gain access to

more light when growing larger and hence may grow faster

(Rüger et al. 2011a). Thus, the growth-size scaling should be

steeper than the scaling predicted under the assumption that

tree growth is independent of access to resources (West,

Brown&Enquist 1999).

To test this explanation,Muller-Landau et al. (2006) incor-

porated the scaling of light availability with tree height (H) as

HSL into the original prediction (Enquist et al. 1999). They

assumed that biomass (M), height and crown area (C) scale

with diameter (D) as DSM, DSH , and DSC , respectively. Fur-

ther assuming that a tree’s gross photosynthetic rate is pro-

portional to its crown area DSC times the light reaching its

crown DSH�SL , and that that biomass growth is proportional

to gross photosynthetic rate (Enquist et al. 1999), leads to
dM
dt / DSCþSH�SL . Thus, the scaling of diameter growth with

diameter (SG) is predicted by SG = SC + SH · SL )

SM + 1 because dD
dt ¼

dM=dt
dM=dD / DSCþSH�SL

DSM�1 .

Using canopy openness derived from canopy census data

at BCI, Muller-Landau et al. (2006) estimated that for trees

<20 cm dbh, the light-height scaling exponent was

SL = 1Æ64. Using data on allometry as well as biomass from

a pantropical compilation (Chave et al. 2005; Bohlman &

O’Brien 2006), they estimated SC = 1Æ39, SH = 0Æ65 and

SM = 2Æ65 (which is consistent with the 8 ⁄ 3 scaling predicted
by metabolic ecology theory; Niklas 1994; West, Brown &

Enquist 1999). Hence, they arrived at a predicted growth-size

scaling for small trees of SG = 0Æ81.

(a)

(b)

Fig. 1. Relationship between abundance and scaling exponents of

dbh in growth models for tree species on Barro Colorado Island,

Panama, with ‡100 individuals. 95% credible intervals are shown as

vertical lines. (a) Model with only dbh as predictor of growth and (b)

model with dbh and light as predictors of growth. The thick horizon-

tal line indicates the predicted value of 1 ⁄ 3; the thin line indicates an

exponent of zero.

Table 2. Number and percentage of species for which scaling

exponents were consistent with the predicted value of 1 ⁄ 3 based on

95% credible intervals of parameter estimates

Model )L +L
Data subset 1985–1990 1990–1995 1985–1990 1990–1995

Non-reproductive

trees

13 (28%) 12 (26%) 21 (45%) 24 (52%)

All trees 41 (48%) 33 (38%) 26 (30%) 31 (36%)

–L, model not including light; +L: model including light.

Fig. 2. Scaling exponent of dbh in the model including only dbh as

predictor ()L) vs. the sum of scaling exponents of dbh and light in the

model including light as additional predictor (+L).

Fig. 3. Scaling exponents of dbh for tree species with ‡100 individu-

als on Barro Colorado Island, Panama, for different subsets of the

data and light availability classes and the growth model using only

dbh as predictor.N is the number of species that were included in the

analysis. The thick horizontal line indicates the predicted value of

1 ⁄ 3; the thin line indicates an exponent of zero.
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When we used our light estimate instead of canopy open-

ness for non-reproductive trees, the scaling of light with dbh

was 0Æ93 in the first census interval and 1Æ0 in the second, as

compared to 1Æ1 (SH · SL). Thus, the prediction of Muller-

Landau et al. (2006) would be modified to SG = 0Æ67 and

SG = 0Æ74 for the first and second census interval, respec-

tively. Our results are closer to these values than to 1 ⁄ 3 (first

interval: lb = 0Æ52, second interval: lb = 0Æ62), although the
confidence intervals of the means do not overlap with these

predictions either. However, at the species level, scaling expo-

nents were consistent with these predictions in 40% and 48%

of the species in the two census intervals as compared to 28%

and 26% for the prediction ofmetabolic ecology.

Thus, the fact that metabolic ecology theory ignores com-

petition for light may at least partly explain the divergence

between observed and predicted scaling (Kerkhoff & Enquist

2006; Muller-Landau et al. 2006; Coomes & Allen 2007).

However, several issues complicate a rigorous testing of this

prediction. First, our light estimate may not correctly capture

the scaling of light availability with tree size, and second,

interspecific and ⁄or ontogenetic variation in plant physiology

(e.g. Peng et al. 2010), allometry (e.g. Poorter et al. 2003;

Bohlman & O’Brien 2006) or wood density (Williamson &

Wiemann 2010) may hamper the comparison of universal

scaling predictions with species-level estimates.

An alternative, albeit unlikely, explanation of scaling expo-

nents >1 ⁄ 3 involves violations of secondary assumptions of

metabolic ecology: complete space-filling and ⁄or minimised

hydrodynamic resistance (Price, Enquist& Savage 2007; Price

et al. 2009). For small plants with few branching levels and

where gravity is less important, such as seedlings and saplings,

the scaling of gross photosynthesis or biomass growth with

plant biomass (h) approaches 1 as compared to 3 ⁄ 4 for ‘opti-
mised’ plants (Enquist et al. 2007). Translated into growth-

size scaling, the predicted scaling exponents would vary from

1 for seedlings (h = 1) to 1 ⁄ 3 for optimised plants (h = 3 ⁄ 4).
However, h is shown to be close to 3 ⁄ 4 already for plants with
a biomass >0Æ1 kg (Enquist et al. 2007). Thus, all our trees

should be considered ‘optimised’, and according to the predic-

tion ofmetabolic ecology, scaling exponents should be 1 ⁄ 3.
When we explicitly accounted for increased light availabil-

ity when trees grow, growth-size scaling exponents were

<1 ⁄ 3, on average and for the majority of single species. This

indicates that observed faster growth at larger size is to a large

degree caused by greater access to light. In the model without

light, the size exponent picked up both effects: the change in

growth with size and the increase in growth with light. This is

because light scales nearly linearly with dbh. And indeed, the

scaling exponent of growth in the analysis without light

(lb = 0Æ52) is close to the sum of the scaling of diameter

(lb = 0Æ07) and light (lc = 0Æ50) (Fig. 2).
In summary, there is not yet a universal theory that

explains growth-size scaling, neither on average nor for single

species. If metabolic ecology theory shall facilitate the param-

eterisation of models of forest dynamics as tools to predict

carbon stocks and sequestration of natural forests when envi-

ronmental conditions change (Phillips et al. 2004; Purves &

Pacala 2008), competition for light needs to be incorporated

and the deviations of single species frommean scaling need to

be better understood. Future studies should include also rare

species and explore whether species’ differences in crown

allometry, shade tolerance or functional traits, such as wood

density or maximum height, can explain differences in the

growth–size relationship.
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Appendix S1 Results for reproductive trees and for the census interval 1990−1995 

 

1. Results for reproductive trees in the census interval 1985–1990  

 

 
Figure A1: Relationship between abundance and scaling exponents of dbh in growth models for trees above 
the reproductive threshold. 95% credible intervals are shown as vertical lines. The thick horizontal line indicates 
the predicted value of 1/3; the thin line indicates an exponent of zero. 
 

 
Figure A2: Scaling exponents of dbh for tree species with ≥100 individuals on Barro Colorado Island, Panama, 
for different subsets of the data and light availability classes and the growth model using only dbh as predictor. 
N is the number of species that were included in the analysis. The thick horizontal line indicates the predicted 
value of 1/3; the thin line indicates an exponent of zero. 
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2. Results for the census interval 1990–1995 

 
 

 
Figure A4: Relationship between abundance and scaling exponents of dbh in growth models for tree species 
on Barro Colorado Island, Panama, with ≥100 individuals. 95% credible intervals are shown as vertical lines. (A) 
Model with only dbh as predictor of growth, and (B) model with dbh and light as predictors of growth. The 
thick horizontal line indicates the predicted value of 1/3; the thin line indicates an exponent of zero. 
 

 
Figure A5: Scaling exponent of dbh in the model including only dbh as predictor (−L) vs. the sum of scaling 
exponents of dbh and light in the model including light as additional predictor (+L). 
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Figure A6: Scaling exponents of dbh for tree species with ≥100 individuals on Barro Colorado Island, Panama, 
for different subsets of the data and light availability classes and the growth model using only dbh as 
predictor. N is the number of species that were included in the analysis. The thick horizontal line indicates the 
predicted value of 1/3; the thin line indicates an exponent of zero. 
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Figure S1 Light estimate vs. tree diameter (dbh) for 96 511 trees at Barro Colorado 

Island, Panama, in the census interval 1990−1995. 
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Figure S2 Model fits of the power function  

 

Model fits for the power function predicting growth from dbh for species with >100 

individuals in the census interval 1990−1995. The black line is the fitted model. Data 

points show mean growth in 10 dbh classes corresponding to 10-percentiles of dbh and 

are plotted at mean dbh of individuals in the dbh class. Only positive growth 

observations are included. The grey line shows predicted growth when the slope is 1/3 

(prediction of the metabolic scaling theory), the intercept was taken from the fitted 

model such that growth at mean log(dbh) corresponded to predicted growth from the 

fitted model (parameter a of the growth model). 
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(A) Non-reproductive trees 
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(B) Reproductive trees 
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(C) All trees 
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