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Spatial maximum entropy modeling from presence/absence tropical forest data
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Understanding the assembly of ecosystems to estimate the number of species at different spatial
scales is a challenging problem. Until now, maximum entropy approaches have lacked the important
feature of considering space in an explicit manner. We propose a spatially explicit maximum entropy
model suitable to describe spatial patterns such as the species area relationship and the endemic
area relationship. Starting from the minimal information extracted from presence/absence data, we
compare the behavior of two models considering the occurrence or lack thereof of each species and
information on spatial correlations. Our approach uses the information at shorter spatial scales to
infer the spatial organization at larger ones. We also hypothesize a possible ecological interpretation
of the effective interaction we use to characterize spatial clustering.

I. INTRODUCTION

A crucial step in finding a rationale for the overwhelming complexity of an ecosystem is to reliably glean information
from measured quantities. The ever increasing amount of data on real ecosystems are useful to test theories: without
these data, there is little to explain and no clear pathway for constructing theories. The availability of detectable and
often persistent patterns in nature [IH4] has stimulated the scientific community to develop theoretical models that try
to explain these regularities. Along these lines, statistical physics provides powerful theoretical tools and stimulates
innovative steps towards the comprehension and unification of the empirical evidence pertaining to the macroecological
patterns observed in nature [BHIT]. Indeed, statistical mechanics has been successfully used to develop theoretical
frameworks for explaining collective behaviors arising from individual interactions [I2HI9], as in the case of the onset
of spontaneous magnetization and diverging correlation lengths in a spin system with local interactions at its critical
point. A generalization of the statistical mechanics approach has been proposed to predict the collective behavior of
ecological systems [20]. In fact, ecological systems can be viewed as a set of very large number of interacting entities
whose dynamics drives the spontaneous emergence of the system organization.

In this article we propose an inference method belonging to a class of “inverse problems” [21] with the aim of
predicting biodiversity patterns over different spatial scales using only the information on local interactions.

In last few decades, extinction rates and biodiversity loss have continued to increase putting at risk several ecosystem
benefits: provisioning, supporting, regulating and cultural services. The knowledge of biodiversity spatial patterns is
crucial to quantify the extinction rates due to habitat loss. Most predictions of biodiversity patterns are inferred by
applying the species area relationship (SAR) to rates of habitat loss. Recent results showed that the most appropriate
method to describe extinction rates are through the endemic area relationship (EAR) [22]. Both SAR and EAR are
spatial patterns, and indeed the relevance of explicit spatial models in ecology has been very much recognized [23| 24].
In particular the SAR relates the number of distinct species to the sampled area and so describes the increase in
species richness with geographic area. On the other hand the EAR expresses the trend between the number of species
completely contained (endemic) in a given area and the sampled area.

In this work we propose a model to study the spatial structure of a rainforest ecosystem by using the maximum
entropy principle. This powerful tool, borrowed from statistical mechanics [25], has a wide range of applications |26 [27]
especially in the field of ecology [28] 29]. To our best knowledge, the application of maximum entropy models has
never considered space explicitly. Here we propose a method to consider space as an explicit degree of freedom in a
maximum entropy model.

One of the major problems in the investigation of an ecosystems organization is to understand how the information
about the species composition in a portion of the system can be used to characterize species composition at larger areas
(species upscaling). Thus a spatially explicit maximum entropy model can be useful to characterize the ecosystem
structure and also be adapted to study species upscaling. Furthermore, the knowledge of species composition is
generally restricted to small portions of territory. Upscaling species richness from local data to larger areas is therefore
a necessary step to characterize species richness at non-local scales. Maximum entropy models are, by definition, the
way to extract the largest amount of possible information from data. In this sense, they represent the natural and
possibly most promising way to upscale information on ecosystems composition. This possibility has already been
explored with non-spatial maximum entropy models [28], but has not fully exploited. Our spatially explicit approach
allows one to infer local spatial interactions that can be used as the building blocks of the spatial distributions of



species at any spatial scale.

II. THE MAX-ENT PRINCIPLE FOR THE ECOLOGICAL COMMUNITY

The maximum entropy principle is a useful method to obtain the least biased information from empirical measure-
ments [9, 25].

Let us consider an ecosystem contained in a given area A divided in N adjacent sites of equal area and further
assume that we have knowledge of which species are contained within it. In order to characterize the state of our
system, we introduce the binary variable o, which registers the occurrence of each species o = {1,---,S5} in each
site ¢ ={1,--- ,N}.

Each species is thus represented by a vector of binary entries where o' = 0 and o} = 1 represent respectively the
absence and the presence of the species « in a particular site j. All the information about species’ occurrences within
our ecosystem is contained in the set of vectors ¢ = (o¢,--- ,0%), with @ = {1,---, S}.

For the sake of simplicity, let us assume that the occurrence of any species is independent of the other ones Then

the probability of finding a given species a in the configuration o can be written as: P(o!, o) = H Do),

where p,, is the probability distribution of finding species « in the configuration o®. At first 81ght this assumption
may be considered an oversimplification. However, it has been shown that individuals belonging to different species
(within a trophic level) can be considered independent to a first approximation [13] 29-32].

We now use the maximum entropy principle (MaxEnt) [25] B3] in order to characterize p, and thus the probability
to observe the whole system in a given configuration. For simplicity, in what follows, we drop the « index.

From presence-absence data, we can build the observed configuration . All the information we know about a given
species’ occurrence is thus contained in this vector. To build our spatial MaxEnt model we will impose constraints on
the average presence of the species in the ecosystem M = ). 6; and the co-occurrence of the species in neighboring

sites E = Y 6;6;. In particular, focusing on the co-occurrence in neighboring sites is suggested by the fact that

there is evidence that individuals belonging to the same species are spatially clumped [34] [35].
We proceed by selecting two indicators that summarize the information contained in & and we want to test if such
information is sufficient to model the biodiversity patterns of the species in the ecosystem.
The MaxEnt framework [25] maximizes the Shannon’s entropy (3, p(o) Inp(o)) constrained to match the empirical
averages M = >, 0i and E = Y 6;6; with the ones calculated using p(e). It can be shown that in this case p(o)
i,
takes the form: 7
]E(o’)—i—hM(a’)

p(o|h, J) = Z( eXp (JZO’ZU] + hZU,) = —Z0a) (1)

where Z(h,J) = e’ E(e)+hM() i5 a normalization constant called the partition function. In this way, we can

o

characterize the probability distribution for every single species relying only on M and E. The parameters h and J
must be fitted from the data for each species to satisfy the imposed constraints. The parameter h of each species
is taken to be constant over all the sites and can be interpreted as an external factor that favors the presence
(h > 0) or absence (h < 0) of the species (i.e. analogous to an external magnetic field in the spin model). J can be
interpreted as an effective interaction between neighboring sites that favors the clustering (J > 0) or the dispersion
(J < 0) of a species among the different sites. A possible interpretation of this effective interaction is a density- or
distance-dependent effect of the reproduction rates of tropical tree species due to host-specific predators or pathogens
(Janzen-Connell effect) [36] [37] with a resulting less clustered distribution.

In the case J = 0, the model reduces to the case of independent sites that resembles a well studied case known as
the random placement model (RPM). The RPM was introduced in ecology for the first time by Coleman [38] to study
spatial patterns in species under different hypotheses on the species abundance distribution. Our framework does not
require the knowledge of species abundances, but only the presence-absence information. In this case, the RPM can
be built imposing M as the unique constraint and the probability distribution takes the form

polh) = %h) exp (Y ) (2)

N . 3
where Z(h) = (1 + eh) . In this case h is fixed by the empirical M and can be shown that h = In (1:”7%) where
m = M/N (see appendix .



A. Spatial patterns in a presence/absence framework

In order to characterize the spatial structure of an ecosystem we focus on the species area relationship (SAR) and
the endemic area relationship (EAR). The SAR expresses the mean number of species found in a sampled area of an
ecosystem. Similarly the EAR can be measured counting the number of species completely contained (endemic) in
the sampled area. In our presence/absence framework, we can define the SAR as

SAR(a) = zsj <Xa {o}) > Z SARG( (3)

a=1

where

0, otherwise

1, if ) . .,0i>0
xallo)) = { 2oica 0
The EAR is given by

EAR(a

HM%

<5 S or0 > = XS:EARa(a) (4)

i€a®

where the Kronecker delta imposes the condition of endemicity using the fact that if a species is endemic in an area
a it is not present outside of it (i.e. it is not present in a¢ the complementary space to a).

In both eq. and eq. , the expression (- - - )g stands for the average calculated using the probability distribution
P(o|ga) With go = (ha, Jo)

In the case of RPM, we can analytically compute both the SAR and the EAR

S

SARgrp(a Z SARu(a) =S =Y (1 — 1) (5)

a=1
where |a| is the size of the sampled area (we measure the area in terms of number of sites |a| in the range from 1 to
A= N), while

EARRPM((I) = Z (1 - ﬁ’La)A_‘a‘ . (6)

[e3

In the RPM case, the EAR and the SAR are related in a simple way [22]
EARRPM(CL) =5 - SARRPM(A — a) . (7)
We note that, using Eq. , the EAR can be written as

Za(ha; Ja)

EARa (Cl) = m (8)

Here Z,(g,,) and Z4(g,,) are the partition functions evaluated respectively in a subconfiguration of area a and on the
whole lattice of area A. As in the case of the SAR, if J = 0, we obtain an analytical expression for the EAR. In fact,
imposing J = 0 in Eq. (8), we obtain (see Appendix

A—|al|
PARGeu(@) = 7620 = () - )

The fact that h, is fixed by the mean occupation m, allows us to rewrite Eq. @ as Eq. @D

III. METHODS
A. From spatial data to presence/absence data

Presence/absence data were obtained starting from abundances of the Barro Colorado Island (BCI) rainforest
(50ha permanent plots). We divided the surveyed area in N = 256 cells and assigned to each one a variable 6§ for
ie€{l,---,N}and a € {1,---,S5} such that 6% = 1 when species « is present at the cell s and 6¢ = 0 if it is absent.
Applying this procedure we end up with a lattice like configuration, one for each species.



B. Algorithm to find h and J

In order to find the h and J that reproduce the constraints, we minimize the function
H(h,J) =W Z(h,J)— Mh— E.J. (10)

From an information theory point of view, this function follows from the Kullback-Liebler divergence requiring that
the “distance” between p(o|h, J) and the unknown real distribution pgqs, must be minimized with the right choice of
h and J. The fact that the functional is convex [39] make this task very simple.

IV. RESULTS AND DISCUSSION

We applied our approach to the BCI rainforest (see and we examined whether the interacting model is capable
of reproducing spatial patterns such as SAR and EAR. To understand the “degree of randomness” of the BCI at this
spatial scale (fixed by N = 256), we compare the coupling parameters J and J,.,,q obtained respectively from the
BCI dataset and a random dataset where configurations were generated with the same number of occupied sites but
distributed randomly. As expected the J,.,q have almost zero mean and very small variance (02 ~ 1073) (Figure [1).
In the case of the configurations obtained from real data, despite a few cases where J, < 0, it is clear that the J
of the interacting model are positive and significantly different from J,,4 (see Figure [1). The analysis of J thus
suggests that species tend to form clusters. The overall positive mean of the J, (see Figure 1)) produces a clustering
of the individuals that has the effect of decreasing the mean number of species with respect to the one of the random
placement model. Although our approach does not consider species abundances, the results for the random placement
model agree with the conclusions of previous works [34] where the authors reported the inadequacy of the random
placement model for various rainforest ecosystems.

The analysis of the couplings also reveal a possible interpretation for the cases in which the J takes on a negative
value. Even if we had analyzed the system at a coarser spatial scale than the one of the single individual, we find that
some species, for which the Janzen and Connell effect has been reported, are characterized by a negative J correspond-
ing to a less clustered configuration. Figure [2|shows an example of two species with similar M, but opposite J,, values.

Figure [3| shows the SAR for the BCI ecosystem. In both the random placement model as well as the interacting
one, the SAR obviously converges to the total species richness due to the fact that the probability to find a species on
the largest surveyed area is one. In order, to quantify the reliability of the predicted SAR for both the interacting and
random models we evaluated the difference between the predicted species richness by the models and the one extracted
from the data (inset Figure . Although the differences between prediction and data in both models present a peak
at an intermediate area, the interacting model consistently performs better. The discrepancy between the interacting
model and the data in the intermediate spatial scale can be understood by the fact that the effective interaction J
characterizing the clustering is obtained using the information at a spatial scale imposed by the nearest neighbor
separation. To be more precise, species aggregate in different ways at different spatial scales [40, [4T] and this can have
an effect on the effective space dependent couplings J.

Figure [4 shows the EAR for the BCI ecosystem. The EAR is negligible at small areas, while it is “forced” to reach
the total number of species in the largest plot (loosely speaking all the species are endemic in the largest area). He and
Hubbell [22], using abundance data from rainforest ecosystems, showed a good agreement of the random placement
EAR with data. However, we find that the interacting model significantly improves the predictions for the EAR with
respect to the RPM. In particular, we find that the RPM model systematically underestimates the number of endemic
species within a given area.

V. CONCLUSIONS

The increased availability of presence/absence data of species occurrences has stimulated the formulation of models
and methods to describe emergent spatial patterns. Most of the models that have been proposed using MaxEnt do not
consider spatial features in an explicit manner. In order to understand and characterize spatial features in ecological
communities, here we propose a spatially explicit maximum entropy model suitable for this kind of presence/absence
data. Using only a few assumptions on the kind of information crucial to capture the spatial structure of the
community, the model can extrapolate the SAR and EAR to larger spatial scales. The SAR for the interacting model
presents discrepancies with the data in the range of intermediate sampled areas. This suggests that the effective
interactions are scale dependent and call for an extension of the analysis to different spatial resolutions. In contrast,



the EAR is fairly well reproduced by our MaxEnt spatial interaction model. Our approach is particularly suitable
for studying rare species which are known to play a central role in ecosystem functioning and stability [42] 43] - and
predict the impact that habitat fragmentation may have on their conservation. Finally our model may be well suited
for the analysis of communities at different spatial scales and the vital problem of upscaling.
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FIG. 1: J couplings Histograms of the coupling strengths J obtained for the interacting model (orange) and for the randomized
configuration (blue). As expected, the Jynq4’s inferred for randomized data have a pronounced peak around zero. The positive
mean of the J corresponding to the BCI configuration is a measure of species clustering. The two dashed lines represent the
means of the two histograms. The J values in the range [-5,-2.5] are likely related to the Janzen-Connell effect.
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FIG. 2: Clumping An example of two species with J values of different signs. Case a) the real spatial distribution (top) of a
species with J, > 0 and the lattice configuration (bottom) and b) the same as in case a) for a species with J, < 0. In the case

a) My =15 and in the case b)

M, = 14.
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FIG. 3: SAR for the ecosystem The SAR over all the sampled areas (left) with the inset that shows the differences between
data and the two models (red for random placement and blue for interacting model); the right column shows a magnification
for small (top) and large regions (bottom). The grey area represents the 20 confidence interval for the interacting model. The
panels on the right represent respectively the magnifications at small and large areas.
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FIG. 4: EAR for the ecosystem. The EAR over all the sampled areas. The interacting model (blue) and the random
placement model (red) reach the same value for the largest A because every species is completely contained in the surveyed
area.



Appendix A: Relation between h* and M*® for the random placement model

For the random placement model, imposing the condition that averaged quantities must reproduce the observed
ones implies that:

(M(@*)p, = N——— = M,. (A1)

Defining m, = %, the previous equation fixes h, to be:

he = In <1ma> . (A2)

— Mgy

Thus imposing only one constraint of reproducing the mean occurrence M is equivalent to fixing the coupling h,,.

Appendix B: EAR for the case J = 0

Starting from EAR,(a) = <5 > (,i70> , one can explicitly write down an expression for the EAR in Eq. . In
i€a® (=13

fact, using the definition of (---)g , we find:

1
EAR,(a) = 7 25 > 5, g€ B (@) Fha M (o) (B1)
ga) o icac

The condition imposed by the Kronecker delta is satisfied only for the case o; = 0 for all the sites i in a® and thus we
obtain:

1 o o
EAR,(a) = 792 ZeJaE( )+ha M(o) (B2)

oca

When J = 0, each site is independent of the others, and so the expression above can be simplified to:

EARq(a) = (}M) (D et) “ (B3)

o

Taking into account Eq. and the fact that Z(h,) = Za(hy), the above expression gives us:

A—la|
1
EAR%PM(CL) = <l—|—ehu> (B4)
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