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Abstract

Long-term surveys of entire communities of species are needed to measure fluctuations in natural
populations and elucidate the mechanisms driving population dynamics and community assembly.
We analysed changes in abundance of over 4000 tree species in 12 forests across the world over
periods of 6–28 years. Abundance fluctuations in all forests are large and consistent with popula-
tion dynamics models in which temporal environmental variance plays a central role. At some
sites we identify clear environmental drivers, such as fire and drought, that could underlie these
patterns, but at other sites there is a need for further research to identify drivers. In addition,
cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, con-
sistent with the idea that stable environmental conditions promote higher diversity. Much commu-
nity ecology theory emphasises demographic variance and niche stabilisation; we encourage the
development of theory in which temporal environmental variance plays a central role.
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INTRODUCTION

There was a time when the prevailing scientific view was that
ecological communities were stable over time, but this is now
long past (Connell 1978; Sprugel 1991; Wright 2005; Laurance
et al. 2009). Climatic shifts alter species assemblages, certainly
over glacial cycles (Colinvaux et al. 1996), but also with mod-
ern anthropogenic climate change (Condit et al. 1996). Out-
breaks of pests and pathogens that cause major abundance
shifts are no longer considered abnormal. There is, however,
considerable disagreement over the relative importance of dif-
ferent mechanisms that cause species abundances to fluctuate,
especially given the increased frequency and intensity of
anthropogenic disturbances (Wright 2005).

Two broad classes of stochasticity that may cause species’
abundances to fluctuate temporally are environmental and
demographic variance (Bjørnstad & Grenfell 2001; Lande
et al. 2003; Melbourne & Hastings 2008; Gravel et al. 2011).
Temporal environmental variance (henceforth ‘environmental
variance’) arises from external drivers such as fluctuations in
rainfall, temperature, fire and pests. The effect of environmen-
tal variance is correlated across individuals within species
because conspecifics exhibit similar responses to the environ-
ment. Thus, environmental variance may be important for
large populations as well as small populations. Demographic
variance can be subdivided into demographic stochasticity,
which arises from the discreteness of individuals and the ran-
dom nature of birth and death processes, and demographic
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heterogeneity, which arises when birth and death rates of
individuals within a population vary by age, size, genotype,
biotic neighbourhood or abiotic neighbourhood. Because the
effects of demographic variance are uncorrelated across indi-
viduals they average out in large populations and are strong-
est in small populations.
The fluctuations in abundance caused by environmental and

demographic variance may be damped by niches, which exert
‘stabilising mechanisms’ on populations (Chesson 2000; Adler
et al. 2007). In the extreme case of strong stabilising mecha-
nisms, species’ abundances may be constrained within narrow
ranges; in the more general case, species’ abundances may still
fluctuate broadly but in a bounded way, ensuring coexistence
(Chesson 1978; Schreiber et al. 2011). The theoretical basis
for niche stabilisation is that the size of each species’ niche is
determined by abiotic or biotic factors, such as resource con-
straints or predators, and that if a species becomes too com-
mon its per-capita growth rate declines because of resource
limitation or increased predation, whereas if it becomes too
rare the opposite occurs. The net effect is negative density
dependence, which, by definition, leads to stabilisation.
The relative strengths of environmental variance and demo-

graphic variance in ecological communities, and the extent to
which they are damped by stabilising mechanisms, remain
poorly understood. One scenario is that a combination of envi-
ronmental variance and weak niche stabilisation leads to stor-
age effects (Chesson 2000) or temporal niches, whereby a rare
species can benefit from favourable environmental conditions
by expanding to fill its niche, but a common species cannot do
so because it is already close to its carrying capacity. On this
view, a species’ abundance would be stabilised over timescales
longer than the periodicity of environmental variance but not
necessarily over shorter timescales. Another scenario is one in
which environmental and demographic heterogeneity are low
and niche stabilisation is weak so that abundances drift with
demographic stochasticity: this is neutral theory (Hubbell
2001). However, another scenario is that environmental
variance, demographic variance and nonlinear dynamics all
interact to produce complex patterns of long-term change in
abundances and community composition (Bjørnstad & Gren-
fell 2001). This latter perspective is prominent in the popula-
tion dynamics literature (Bjørnstad & Grenfell 2001), but in
the community ecology literature, particularly with regards to
forest trees and other plants, there has been a greater focus on
demographic variance (neutral theory) and niche stabilisation.
In this study, we focus on temporal abundance fluctuations

of tree species in tropical and subtropical forests. These tree
communities can be spectacularly diverse, with up to 1000
species in a 50 ha plot. Static patterns of diversity, such as the
species abundance distribution, have been well studied in these
forests (Hubbell 2001; Volkov et al. 2003; Adler et al. 2007),
but temporal patterns have received less attention (Leigh
2007). Long-term forest plots (Condit 1998) provide a window
into these temporal patterns and an opportunity to study tree
population dynamics at unprecedented scales. Comparing
abundance fluctuations across sites with different species rich-
ness and environmental conditions can also help to isolate the
relative importance of environmental and demographic vari-
ance. Our data set comprises long-term records of fluctuations

in tree species’ abundance from 12 sites around the world.
Our goal is to characterise the observed variability in these
communities and thereby make general inferences about the
processes driving population dynamics at different sites over
decadal timescales.

MATERIALS AND METHODS

Data

At 12 sites across three continents (Condit 1998), we con-
ducted complete censuses of tree communities over periods
spanning 6–28 years, and we documented abundance changes
in over 4000 species. The longest census period (28 years) was
at Barro Colorado Island (BCI) in Panama. Each of our 12
census plots covers at least 16 ha of forest in which all stems
with diameter-at-breast-height (DBH) 1 cm or greater
(25 000–350 000 trees per plot; over 2 million trees in total)
are marked and identified to species level (Table 1). Total tree
species richness varies from �70 at a seasonal dry forest in
India to over 1000 at an aseasonal wet forest in Southeast
Asia (Table 2). Individual species vary in abundance from one
(every plot has several such singletons) to more than 60 000.

Abundance fluctuations across species within sites

For a given site, denote by Nit the abundance of species i in
census t. We investigated the scaling of squared abundance
changes (Ni,t+1 � Nit)

2 with initial abundance (Nit) and com-
pared it to theoretical predictions. To make theoretical predic-
tions, we used models of population change incorporating
demographic variance and environmental variance.

Demographic variance
Theory predicts that if demographic variance is the primary
mechanism driving population dynamics then variance in
abundance change should scale linearly with abundance
(Lande et al. 2003; Engen et al. 2005). Therefore, a simple
way to test the hypothesis that demographic variance drives
population dynamics is to look at the exponent of the scaling
relationship between variance in abundance change and abun-
dance. We performed this test in the context of a model of
demographic variance that is mechanistic and thus also pro-
vides confidence intervals on abundance changes. The model
is a neutral model, in which by definition the demographic
parameters are the same across all species (Hubbell 2001;
Volkov et al. 2003). We used binomial survival, which
assumes that mortality events are independent across individu-
als, and Poisson recruitment, which assumes that recruitment
events are independent across individuals and across time
[these distributions are standard in models of demographic
variance: Melbourne 2012; using binomial recruitment instead
makes no qualitative difference to the results (not shown)]:

Ni;tþ1 �BiðNit; 1� bÞ þ PoisðNitbÞ ð1Þ
Here b is both the per-capita mortality and per-capita recruit-
ment rate. The tilde symbol in eqn 1 means ‘is distributed as’.
From the model described by eqn 1, we obtain E(Ni,t+1) = E
(Ni,t) and hence
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E ðNi;tþ1 �NitÞ2jNit

� �
¼ var ðNi;tþ1 �NitjNitÞ ¼ Nitbð2� bÞ

ð2Þ
where var ðXjYÞ indicates the variance of X given Y and we
have used the identity var ðX� YjYÞ ¼ var ðXjYÞ. Because of
the neutrality assumption, eqn 2 can be interpreted as either
variance across time or variance across species.
Our neutral model (eqn 1) ignores immigration, which is

justified as a first approximation because previous work sug-
gests that immigrants into these forest plots constitute only
�10% of recruits (Chisholm & Lichstein 2009). It also
assumes that the community size is not changing directionally
over time (because per-capita mortality equals per-capita
recruitment), which is a necessary assumption in a model of
strictly demographic variance (directionally varying total com-
munity size would by contrast imply synchronous environ-
mental variance; see Appendix S1).
For each census interval at each site, we estimated the

parameter b in eqn 1 as the average of observed overall per-
capita recruitment and mortality rates and compared the
squared abundance fluctuations predicted by the neutral
model (eqn 2) to observations.

Environmental variance
The simplest models of environmental variance predict that
abundance changes should scale quadratically with initial
abundance (Lande et al. 2003). This is for the idealised case
of no density dependence and perfectly correlated responses
to the environment across individuals within species. Mathe-
matically, this can be written as

Ni;tþ1 �RiNit ð3Þ
Here Ri is a random variable representing temporal varia-
tion in the response of species i to the environment (we
ignore the unrealistic special case of eqn 3 where the Ri are
time-invariant and each species undergoes exponential
growth or decay). The index i on Ri means that the distri-
bution of responses to the environment differs across spe-
cies. The quadratic scaling of the variance in abundance
change with initial abundance can be derived directly from
eqn 3:

var ðNi;tþ1 �NitjNitÞ ¼ N2
itvar ðRiÞ

And it follows that squared abundance changes also scale qua-
dratically with initial abundance:

E ðNi;tþ1 �NitÞ2jNit

� �
¼ varðNi;tþ1 �NitjNitÞþ

EðNi;tþ1 �NitjNitÞ2

¼ N2
itfvarðRiÞ þ ðEðRiÞ � 1Þ2g

ð4Þ

This idealised case of environmental variance serves as a
bound on the kind of dynamics we might expect natural popu-
lations to exhibit. In more general models that include demo-
graphic variance as well, one expects to see power-law scaling
with exponents somewhere between 1.0 (the idealised demo-
graphic-variance case of eqn 2) and 2.0 (the idealised environ-
mental-variance case of eqn 4). In more general models that
include niche-based negative density dependence (all of our
models here are density-independent) or immigration, the expo-
nent again may be substantially less than 2.0 and even less than
1.0, because negative density dependence by definition reduces
the population growth rates of common species and elevates
those of rare species. We did not consider niche-based negative
density dependence or immigration in our models (because
measured exponents were close to 2.0, suggesting these pro-
cesses play relatively minor roles; see Results and Discussion).
Our environmental variance model (eqn 3) describes abun-

dance changes over time of a single species given a distribution
of population growth rates Ri (i.e. responses to the environ-
ment). In our data for each site, we do not have multiple data
points for a single species (although we have multiple censuses,
these are not really independent time points because they occur
within a single tree generation), but single data points for many
species. In this case, the scaling of abundance changes with
abundance may deviate from the quadratic scaling predicted by
eqn 4 because the distribution of population growth rates may
be different for each species. In particular, a species’ abundance
may not be independent of its distribution of responses to the
environment, and responses to the environment may be corre-
lated across species. With these limitations in mind, we com-
pared eqn 4 to the multispecies data at each site in each census

Table 1 Study sites ordered by latitude (further details at http://www.ctfs.si.edu/)

Site name Location Latitude Longitude

Rainfall

(mm/year) Area (ha) Census period

Ituri Congo 1.43°N 28.58°E 1682 40 1995–2007
Pasoh Malaysia 2.98°N 102.31°E 1788 50 1987–2005
Lambir Malaysia 4.19°N 114.02°E 2664 52 1992–2008
Korup Cameroon 5.07°N 8.85°E 5272 50 1998–2008
Sinharaja Sri Lanka 6.40°N 80.40°E 5016 25 1995–2007
Khao Chong Thailand 7.54°N 99.80°E 2696 24 2000–2010
BCI Panama 9.15°N 79.85°W 2551 50 1982–2010
Mudumalai India 11.60°N 76.53°E 1249 50 1988–2000
HKK Thailand 15.63°N 99.22°E 1476 50 1993–2009
Palanan Philippines 17.04°N 122.39°E 3380 16 1998–2010
Fushan Taiwan 24.76°N 121.56°E 4271 25 2004–2009

BCI, Barro Colorado Island; HKK, Huai Kha Khaeng; Ituri site includes Edoro and Lenda plots.
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interval by fitting a power law of the form y = ax2 to the data,
where y is the squared abundance change (Ni,t+1 � Ni,t)

2 and x
is the initial abundance Ni,t. This tests whether tree population
dynamics on decadal timescales can be approximated by a sim-
ple model of environmental variance that ignores immigration,
species differences and density dependence.

Abundance fluctuations within species across sites

We then conducted a similar analysis within species across
sites, i.e. we looked at how abundance fluctuations scaled with
abundance for species that were present at more than one site.
We restricted this analysis to our Asian sites, which have sub-
stantial species overlap. Again, under the hypothesis that

demographic variance is the major driver of population
dynamics the scaling should have exponent 1.0, whereas under
the hypothesis that environmental variance is the major driver
the scaling should have exponent 2.0. The small number of
data points per species prevented us from analysing each spe-
cies independently; instead we used a linear mixed effects
model with species as a random effect to estimate an average
scaling exponent for all species.

Cross-site comparisons of overall variability in abundance

fluctuations

We then compared the overall patterns of abundance fluctua-
tions across forests to see whether some forests were more

Table 2 Fits of the full population model to tree population change data at each site for each census interval (see Tables S1 and S2 for extended

information)

Site and census interval

Species

richness

Fitted intrinsic population growth

rate (q) (year�1) with quantiles Fitted mean

mortality (l)
(year�1)

Variance estimates

Env. (ve)

(year�2 indiv�2)

Dem. (vd)

(year�1 indiv�1)Centre 2.5% 97.5%

Edoro 1–2 354 �0.0075 �0.0370 0.0526 0.0277 0.000468 0.0556

Edoro 2–3 362 �0.0081 �0.0385 0.0729 0.0336 0.000745 0.0718

Edoro 1–3 354 �0.0058 �0.0418 0.0520 0.0301 0.000498 0.0598

Lenda 1–2 346 �0.0005 �0.0338 0.0172 0.0250 0.000150 0.0456

Lenda 2–3 353 �0.0059 �0.0537 0.0306 0.0331 0.000398 0.0575

Lenda 1–3 346 �0.0018 �0.0568 0.0195 0.0299 0.000348 0.0496

Pasoh 1–2 811 �0.0107 �0.0278 0.0054 0.0193 0.000062 0.0277

Pasoh 2–3 811 �0.0073 �0.0240 0.0470 0.0268 0.000309 0.0557

Pasoh 3–4 814 �0.0082 �0.0501 0.0042 0.0337 0.000182 0.0517

Pasoh 4–5 814 �0.0147 �0.0461 0.0538 0.0344 0.000588 0.0636

Pasoh 1–5 808 �0.0088 �0.0364 0.0197 0.0252 0.000176 0.0418

Lambir 1–2 1197 0.0054 �0.0132 0.0396 0.0165 0.000161 0.0423

Lambir 2–3 1203 �0.0001 �0.0228 0.0614 0.0263 0.000425 0.0621

Lambir 3–4 1203 �0.0030 �0.0103 0.0654 0.0231 0.000393 0.0588

Lambir 1–4 1197 0.0024 �0.0149 0.0445 0.0174 0.000210 0.0434

Korup 1–2 490 �0.0043 �0.0333 0.0350 0.0255 0.000263 0.0492

Sinharaja 1–2 222 �0.0060 �0.0546 0.0237 0.0241 0.000349 0.0375

Sinharaja 2–3 219 �0.0094 �0.0459 0.0058 0.0247 0.000157 0.0347

Sinharaja 1–3 222 �0.0083 �0.0531 0.0122 0.0247 0.000251 0.0351

Khaochong 1–2 584 �0.0036 �0.0377 0.0475 0.0312 0.000411 0.0630

Khaochong 2–3 574 �0.0087 �0.0348 0.0365 0.0332 0.000292 0.0624

Khaochong 1–3 584 �0.0037 �0.0463 0.0314 0.0333 0.000338 0.0609

BCI 1–2 305 0.0072 �0.1102 0.0689 0.0613 0.001848 0.1159

BCI 2–3 304 0.0010 �0.0738 0.0757 0.0545 0.001239 0.1099

BCI 3–4 304 �0.0060 �0.0915 0.0299 0.0571 0.000870 0.0958

BCI 4–5 303 �0.0185 �0.0749 0.0738 0.0581 0.001258 0.1066

BCI 5–6 301 �0.0143 �0.0442 0.0948 0.0532 0.001205 0.1121

BCI 6–7 299 �0.0086 �0.0319 0.1120 0.0497 0.001349 0.1154

BCI 1–7 305 �0.0042 �0.0697 0.0467 0.0507 0.000761 0.0936

Mudumalai 1–2 69 �0.0049 �0.2084 0.0134 0.0871 0.003432 0.1218

Mudumalai 2–3 64 �0.0046 �0.2362 0.0546 0.0916 0.005318 0.1351

Mudumalai 3–4 65 �0.0081 �0.0920 0.2439 0.0588 0.006831 0.1517

Mudumalai 1–4 68 �0.0090 �0.1560 0.0906 0.0634 0.003424 0.1059

HKK 1–2 294 �0.0074 �0.1184 0.0796 0.0671 0.002213 0.1208

HKK 2–3 285 �0.0095 �0.0495 0.2302 0.0359 0.005152 0.1130

HKK 3–4 283 �0.0004 �0.0402 0.2091 0.0670 0.004048 0.1767

HKK 1–4 293 �0.0016 �0.0644 0.1259 0.0465 0.002103 0.1077

Palanan 1–2 308 0.0125 �0.0029 0.1723 0.0204 0.002126 0.0902

Palanan 2–3 317 �0.0123 �0.0408 0.0398 0.0288 0.000374 0.0513

Palanan 1–3 308 0.0020 �0.0140 0.0827 0.0231 0.000606 0.0646

Fushan 1–2 110 �0.0019 �0.0705 0.0554 0.0423 0.000888 0.0799

The environmental and demographic variance components (ve and vd) are estimated as described in the main text and Appendix S3.
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variable than others. In these analyses, we considered relative
abundances (xit = Nit/∑jNjt) rather than absolute abundances
because the total community size varies substantially across
forests and so, for example, an abundance of 10 in one forest
may not have the same biological significance as an abun-
dance of 10 in another forest (note, though, that we did
repeat the analyses with absolute abundances to check robust-
ness). In making direct comparisons across sites, we had to
control for large cross-site variation in total species richness
and distributions of relative abundances. To achieve this, we
binned species into log10 relative abundance classes and com-
pared fluctuations only within relative abundance classes
across sites. So, for example, we compared the abundance
fluctuations of species comprising 1–10% of the community at
BCI with the abundance fluctuations of species comprising
1–10% of the community at Pasoh, and so on.

Partitioning demographic and environmental variance

The analyses described above suggested that a mix of demo-
graphic and environmental variance was driving the
observed fluctuations, and so we sought to estimate these
two variance components for each forest using a statistical
model, the details of which are presented in the Supporting
information (Appendices S2–S5). Briefly, we created the sta-
tistical model by modifying the neutral population dynamics
eqn 1 so that mortality and recruitment rates were distinct
and could vary across species, and then we specified func-
tional forms for the distributions of the annualised mortality
and recruitment rates: we described mortality with a lognor-
mal distribution (Condit et al. 2006) and the difference
between recruitment and mortality (i.e. the population
growth rate) with an asymmetric Laplace (exponential) dis-
tribution (Appendix S4). We then fitted the statistical model
to the annualised rates using Bayesian hierarchical methods.
The fitted variance terms were decomposed into environmen-
tal and demographic variance using standard techniques
(Appendix S3).
There are several limitations to this fitted abundance fluctu-

ation model, mostly arising from the short length of our time
series (maximum 28 years) relative to a tree generation (�50–
100 years): (1) The true survival and recruitment distributions
would be more complicated than binomial and Poisson distri-
butions. (2) Our fitted environmental variance distribution
confounds variation in abundance fluctuations across species
with variation within species. (3) The short length of the time
series allowed us to fit environmental variance in recruitment
or mortality but not both: we chose the former for reasons
explained in Appendix S3. (4) Demographic heterogeneity
could only be fitted in an approximate way (Appendix S3). (5)
The model ignores immigration, possibly inflating estimates of
environmental variance. Thus, the fitted model should be
viewed as a statistical analysis providing a first approximation
to the demographic and environmental variances in these for-
ests within the limitations of the data, rather than a compre-
hensive model capturing all relevant biological detail. The
output of the fitted model should be interpreted in conjunc-
tion with the analyses on the raw data described in the
previous sections.

RESULTS

Scaling of abundance fluctuations across species within sites

At every site, the scaling of abundance fluctuations with abun-
dance over a single census interval was intermediate between
that predicted by a neutral model (pure demographic stochas-
ticity; exponent 1.0) and a model of environmental variance
(exponent 2.0) (Fig. 1, Figs. S2–S3). More specifically, com-
mon species’ abundance fluctuations were roughly consistent
with the scaling predicted by the environmental variance
model, whereas rare species’ abundance fluctuations were
more consistent with the neutral model. This suggests that
rare species’ dynamics are dominated by demographic sto-
chasticity, whereas common species’ dynamics are dominated
by environmental variance. We also found that abundance
fluctuations appear to have a large asynchronous component
(Appendix S1; Fig. S1; see also Table S1).
The same overall patterns held when we looked at the lon-

gest time interval available in sites where more than two cen-
suses had been conducted (Fig. 2), i.e. common species’
dynamics appeared to be driven predominantly by environ-
mental variance whereas rare species’ dynamics appeared to
be driven predominantly by demographic variance.

Scaling of abundance fluctuations within species across sites

Patterns of abundance fluctuations within species across our
Asian sites were consistent with those observed in the within-
site analyses: demographic variance dominated at low abun-
dance and environmental variance dominated at high abun-
dance (466 species were present at two or more of our Asian
sites). Specifically, the estimated exponent of the power law
relationship from all the data was 1.160 � 0.038
(mean � standard error), indicating a predominance of demo-
graphic variance, but when only common species were consid-
ered, the exponent was close to 2.0, indicating a
predominance of environmental variance (Fig. 3).

Cross-site comparisons of overall variability in abundance

fluctuations

In cross-site comparisons, we observed that the rarest species,
those comprising less than 1/10 000th of a community, fluctu-
ated to a similar degree regardless of site species richness
(Fig. 4). In contrast, the common species, those comprising
more than 1/1000th of a community, were much more vari-
able at species-poor sites than at species-rich sites (Fig. 4).
Similar results were obtained when we used absolute rather
than relative abundances (not shown). As a rough rule of
thumb, our data suggest that abundance fluctuations of com-
mon species are roughly four times as big in a forest of 100
species as in a forest with 1000 species (based on fitted lines in
Fig. 4).

Partitioning demographic and environmental variance

The fitted model provided a quantitative decomposition of the
annualised demographic (vd) and environmental variance (ve)

© 2014 John Wiley & Sons Ltd/CNRS
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components and confirmed the results from the main analyses
(Tables 2, S2). Specifically, there was a mix of environmental
and demographic variance at all sites (consistent with the
within-site analyses above), and variance tended to be higher
in species-poor sites (consistent with the cross-site compari-
sons above). The fitted model adequately captured the varia-
tion in the data at most sites and census intervals, and clearly
illustrated the transition from dynamics dominated by demo-
graphic variance at low abundances to dynamics dominated
by environmental variance at high abundances (Figs. 1–2, S2–
S3). Exceptions to the good model fit occurred in a few census
intervals where the empirically observed abundances of rare
species were unusually stable, causing the fitting procedure to
underestimate environmental variance (Pasoh 1–2, Pasoh 3–4
and Mudumalai 1–2; Figs. S2–S3). Our estimates of

demographic variance vd and environmental variance ve
(Table 2) can be used to estimate the range of possible abun-
dance fluctuations given a species’ initial abundance (see
Appendix S6; these methods were used to construct the black
curves with gray confidence intervals in Figs. 1–2).

DISCUSSION

The role of environmental variance as a driver of population
dynamics has been highlighted in previous studies of birds,
marine fish, plankton and other taxa (Bjørnstad & Grenfell
2001; Lande et al. 2003). In forest tree communities, environ-
mental variance has also been identified as an important dri-
ver in some cases (e.g. Sukumar et al. 2005; Baker et al. 2008;
Suresh et al. 2010), but theoretical work on forest dynamics
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and community assembly has remained centred on demo-
graphic variance (e.g. neutral theory) and niche stabilisation.
Our long-term large-scale data set (over 2 million individuals
of 4000 species in 12 forests on three continents) shows that
environmental variance is consistently the largest factor driv-
ing tree population dynamics on decadal timescales. The line
of reasoning that leads to this conclusion is that (1) Environ-
mental variance induces temporal fluctuations in mortality
and reproduction rates that are correlated across individuals
within species, because individuals within species respond sim-
ilarly to the environment (Lande et al. 2003); (2) Theory pre-
dicts that squared abundance changes should scale as the
second power of abundance in the extreme case of perfectly
correlated responses to the environment within species, density
independence, no demographic variance and no systematic
relationship between abundance and response to the environ-
ment (eqn 3) and (3) Squared abundance changes in our data
set do indeed scale roughly as the second power of abundance

(Figs. 1–3), at least for large abundances where the effects of
demographic variance are expected to be weak. Theoretical
models of population dynamics centred on other processes,
such as demographic variance, niche-based negative density
dependence and nonlinear interspecific interactions (see
below), predict different scalings. Thus, while these other pro-
cesses do operate in forest tree communities (e.g. Hubbell
2001; Wright 2002; Comita et al. 2010; Mangan et al. 2010)
and are necessary for a holistic understanding of population
dynamics, their effects appear to be weak relative to those of
environmental variance on decadal timescales. In addition, we
found that abundance fluctuations across species have a large
asynchronous component, i.e. relative and not just absolute
abundances are fluctuating, which means that environmental
variance plays a key role in determining community composi-
tion.
Processes that lead to environmental variance include

drought, fires and storms, but also insect and fungus out-
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breaks that may arise indirectly from environmental fluctua-
tions. Among our 12 sites, environmental fluctuations driving
tree population changes were in some cases conspicuous and
have well-established causes. Typhoon Imbudo passed over
the Palanan plot in 2003, and the census following showed
high recruitment of several light-demanding species. In that
census interval, the distribution of population fluctuations was
skewed heavily toward the positive, with some species exhibit-
ing population growth rates of r = 14% per year. However,
while some species recruited well, many others did not, and
some even declined in abundance: A typhoon does not lead to
a uniform response across species, but a highly variable
response. At Huai Kha Khaeng in Thailand, ground fires dri-
ven by the El Ni~no–Southern Oscillation (ENSO) burned
through much of the plot in 1997–1998 near the end of the
first census interval, promoting a recruitment pulse of fast-
growing species and near complete loss of some fire-sensitive
species (Baker et al. 2008). Other conspicuous fluctuations in
populations were unexpected, but clearly attributable to exter-
nal drivers. At BCI, a drought during the 1983 ENSO event
caused high mortality in a few species, and the former canopy
dominant Poulsenia armata suffered a 50% population loss
over the following decade (Condit et al. 1996; Feeley et al.
2011). In the Mudumalai plot, four large fires (> 80% plot
area burnt) during the first two census intervals resulted in
high mortality primarily in the small-sized individuals,
whereas elephant herbivory resulted in large population
declines of favoured browse plants of the order Malvales
(Sukumar et al. 2005; Suresh et al. 2010).
Several of the sites, in contrast, have witnessed no conspicu-

ous fluctuations in climate or herbivory, particularly Pasoh
and the three African sites. Nevertheless, tree species at these
sites still exhibited large fluctuations in population size with a
statistical signature of environmental variance (i.e. scaling of
squared abundance changes as the second power of abun-
dance; Fig. 1). Although these forests were more stable than
the fire- and typhoon-impacted forests (Table 2, Fig. 1), there
must still be environmental drivers that favoured some species
over others during the time intervals considered. Weather var-
iation is a likely candidate. Identifying specific weather-related
mechanisms and other weaker drivers may, however, be diffi-
cult in tree communities because of the long generation times
and the lack of data on past environmental conditions. The
median age of 1 cm DBH stems on BCI has been estimated at
16.6 years with a maximum of about 80 years (Hubbell 1998),
so the new recruits in any given forest census (stems that have
reached 1 cm DBH in the last �5 years) reflect not just the
environmental conditions of the current year or decade but
instead a weighted integral over decades of variable environ-
mental conditions. Acquiring data on environmental condi-
tions over such timescales and developing statistical
techniques to integrate over them in conjunction with the tree
abundance data is challenging. It is worth noting that in
annual plant communities, where much biodiversity theory
has been developed, the shorter generation times reduce the
time lags in species-environment interactions (Chesson &
Huntly 1989) and make such analyses more tractable.
Our analysis also provides a potential answer to the long-

standing ecological question of why some forests around the
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world have much higher diversity than others (e.g. in our data
set there is an almost 20-fold variation in species richness across
forests). The data suggest that high tree diversity may be the
result of a stable environment: mechanistically, stable environ-
mental conditions lead to smaller fluctuations in abundance,
which reduces the probability of extinction of rare species, and
elevates diversity (Fig. 4). This is qualitatively similar to the
hypothesis that the latitudinal biodiversity gradient (Hillebrand
2004) is explained by stable environmental conditions in the tro-
pics and unstable environmental conditions in the temperate
zone over geological time (Pianka 1966; McGlone 1996). We
speculate, based on our results, that tropical diversity may be
explained not just by environmental stability at one timescale
(geological) but at several (e.g. decadal and geological).
The persistence of a strong signature of environmental vari-

ance on timescales of up to 28 years in these forests demon-
strates a role for environmental processes that have
periodicity longer than this or are non-stationary (Baker et al.
2005). A component of long-term cyclic variation arises from
climate, which exhibits fluctuations such as those associated
with ENSO (Condit et al. 1996; Cook et al. 2010). Long-term
environmental variation may also arise from directional
anthropogenic impacts such as climate change (Holmgren
et al. 2001; Condit et al. 2004), altered nutrient deposition
rates (Vitousek et al. 1997) or the extirpation of seed-dispers-
ing frugivorous mammals (Wright et al. 2000).
We have stated that environmental variance is the most plau-

sible mechanism for explaining the large abundance fluctua-
tions observed in the tree data; we now briefly explain why
alternative hypotheses are less plausible. The hypothesis that
some unmodelled form of demographic heterogeneity could
account for the observed large abundance fluctuations can be
rejected because, as already noted, the effects of demographic
variance should decay rapidly with population size (Lande
et al. 2003), whereas we observe large fluctuations in abundant
species at all sites (i.e. the power-law scaling with exponent
�2.0; Fig. 1–2). We can also rule out the possibility that com-
mon species are systematically those with high demographic
rates (Fig. 3). Another alternative hypothesis is that large
abundance fluctuations are a signature of chaotic dynamics
induced by nonlinear species interactions (Huisman & Weiss-
ing 2001). Under this hypothesis, the fluctuations are driven
not by external environmental factors but by the intrinsic pro-
cess of competition between tree species, e.g. the heavy mortal-
ity of the former BCI canopy dominant Poulsenia armata in
the 1980s would be attributed not to the 1983 drought but to
the rise of another tree species that has a negative effect on
Poulsenia or the decline of a species that has a positive effect
on it, and the rise and decline of these species would be attrib-
uted to earlier rises and declines of other species. Such dynam-
ics may well play some role in our forests, but we expect that
they are less important than environmental drivers because
most pairwise species interactions are inevitably weak in high-
diversity communities of sedentary individuals (e.g. trees).
Techniques for distinguishing chaos from stochasticity could
resolve this issue more definitively (Sugihara & May 1990) but
would require longer time series (e.g. from pollen cores).
What can the patterns of abundance fluctuations observed

across tree species and across forests tell us about the major

theories of forest tree diversity? We turn first to neutral theory
(Hubbell 2001), which includes the processes of demographic
stochasticity, speciation and dispersal, but ignores any niche
differences or environmental effects. The tendency of neutral
theory to perform well against static biodiversity patterns, but
poorly against dynamic patterns has been noted previously in
Panama (Condit et al. 1996; Leigh 2007) and the Amazon
(Laurance et al. 2009). We can now say with more certainty
that the failure of neutral theory’s dynamical predictions in
forests is general and not confined to particular species, sites
or time periods (Fig. 1). Although neutral theory may ade-
quately describe species abundance distributions (Volkov et al.
2003), species area curves (O’Dwyer & Green 2010) and immi-
gration rates (Chisholm & Lichstein 2009; Condit et al. 2012),
it clearly has a timescale problem (Nee 2005). It is not yet
clear whether neutral theory’s good static predictions are
robust to the addition of environmental variance. Our results
will facilitate the development of stochastic biodiversity mod-
els that can address these issues.
The second theory that our results can inform is niche stabili-

sation theory (Chesson 2000; Adler et al. 2007). Niche stabilisa-
tion theory holds that species’ abundances are stabilised over
time by negative density dependence arising from disease, pre-
dation or resource limitation (Comita et al. 2010; Mangan et al.
2010; Chisholm & Muller-Landau 2011). Stabilisation does not
necessarily mean that species’ abundances are stabilised within
narrow ranges, because the dynamics can play out over long
timescales: species can have good years and bad years, or good
decades and bad decades. Indeed, these very fluctuations may
allow a large number of species to persist in the system (i.e. stor-
age effects or temporal niches; Chesson 2000). On this view, the
large fluctuations observed in our forests would have been even
larger had it not been for the effects of stabilising mechanisms.
Our quantification of the variance terms (Table 2), may be use-
ful for parameterising models of temporal niches to place
bounds on the strengths and characteristic timescales of stabili-
sation forces in these tree communities.
In view of our results, we encourage the development of

biodiversity and community assembly theory in which envi-
ronmental variance has a more central role (Azaele et al.
2006; Ostling 2012). Niche stabilisation theories that allow
species abundances to fluctuate broadly should be favoured
over those that constrain species abundances within narrow
ranges. Stochastic theories of community ecology, which have
typically been based on demographic stochasticity and weak
or absent niches (Hubbell 2001; Rosindell et al. 2011), should
be extended to consider the combined effects of demographic
and environmental variance. These proposals would also bring
community ecology more in line with the literature on popula-
tion dynamics, where there has been a greater emphasis on
long-term change arising from the interaction of environmen-
tal variance, demographic variance and nonlinear dynamics
(Bjørnstad & Grenfell 2001) and less emphasis on stability
and neutrality.
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Supporting Information: Temporal variability of forest communities: 
empirical estimates of population change in 4000 tree species

Appendix S1: Models of synchronous environmental variance

We tested whether the abundance fluctuations observed in our data could be 
explained by synchronous responses to environmental variance. Our tests were 
based on our model of demographic variance from the main text:

N i ,t+1 Bi (N it , ζ)+Pois (N it β)

with ζ=1−β . If we relax this latter assumption and use subscripts t to indicate 
that the recruitment probability β t  and survival probability ζ t  vary over time, 
this becomes a model of  demographic variance and synchronous environmental 
variance. The reason this model exhibits synchronous environmental variance is 
that vital rates vary over time but are the same for all species at any given time. 
This leads to directional changes in the size of the community (as opposed to the 
random fluctuations around average community size observed when ζ=1−β ). 
Changes in species’ relative abundance are largely synchronized in this model: any 
variation across species is due solely to demographic variance.

For each site and census interval we set the parameters β t  and ζ t  to the 
observed average per-capita recruitment and survival rates. We then generated 
random realizations of abundance changes from the model and compared these to 
the empirical data. We performed two statistical tests, the first focusing on the signs 
of abundance changes and the second focusing on the magnitudes (variances) of 
abundance changes. The result of the first test was that fewer species’ abundances 
are moving in the same direction than one would expect based on the synchronous 
model: an average of 71.9% of species’ abundances moved in the direction of the 
majority, and this was statistically significantly fewer than expected from the 
synchronous model in 26 out of 41 site-census-interval combinations at an 
α=0.05  significance threshold; 22 of these remained statistically significant at an 
α=0.001  significance threshold. The result of the second test was that the 

synchronous model severely underestimated the variation in abundance 
fluctuations across species in most cases (Fig. S1), even though it accurately 
captured the mean size of individual species’ abundance fluctuations at several 
sites.

These results together indicate that the synchronous model is implausible at most 
sites and that there is therefore a strong component of asynchrony in tree species’ 
responses to the environment. This led us to develop the model of environmental 
variance (described in the main text and Appendices S2–S5) that allows both 
synchronous and asynchronous changes. We later confirmed the inadequacy of 
models of synchronous environmental variance by comparing the AIC of the full 
fitted model versus the AIC of fitted synchronous models and finding that the former 
was always substantially lower (Table S1).

Appendix S2: Summary data



2

For a given forest site, denote by N it  the number of individuals of species i  in 
census t , and by T it  the average date (measured in yr) on which individuals of 
species i  were counted during census t  ( T it  is an average because 
individuals are typically censused over a range of dates). Then let ΔT it=T i ,t+1−T it  
be the census interval, measured in years, between successive counts. Finally let 
Z it  be the number of individuals of species i  in census t  that survived to 

census t+1 . For each pair of censuses at each plot, the completed data table thus 
has a species name and four pieces of information: N it , N i ,t+1 , ΔT it  and 
Z it . All species are included, encompassing all individual trees confidently 

assigned to a consistent taxonomic category. Many of the species are unnamed but 
recognizable as morphospecies. Rare species with N it=0  and N i ,t+1>0  are 
excluded, because our final model ignores immigration (see below). There were few 
species in this category. For species with N it>0  and N i ,t+1=0  we set 
N i ,t+1=0.01  arbitrarily to allow these species to be included in the mathematical 

analysis.

For every species i , and for each census interval t , we calculated the rate of 
population change, r it , which is the annual proportional change in population size 
from census t  to t+1 :

rit=
1

ΔT it

log (N i ,t+1

N it
)

(S)

We also estimated the annual mortality rate for each species i  in each census 
interval t :

mit=
−1
ΔT it

log ( Z it

N it
)

(S)

Appendix S3: General model of abundance fluctuations

In the main text, our simplest model of population dynamics was a neutral model in 
which the per-capita survival rate ζ=1−β  and reproductive rate β  were the 
same for every species i :

N i ,t+1 Bi (N it , ζ )+Pois (N it β )

In Appendix S1, we investigated the case where ζ  and β  vary across time, but 
are still constant across species: this was a model of synchronous environmental 
variance. Both the neutral model and the synchronous environmental variance 
model severely underpredicted the magnitude of abundance fluctuations in the data 
(Figs. 1–2 , Figs. S1–S3).
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More generally, we could imagine that the rates ζ  and β  would vary across 
individuals, species and time, and that there would be a density-independent 
immigration rate Iit  that could vary across species and time:

N i ,t+1 I it+∑
n=1

N it

{Bi (1 , ζ i , t , n )+Pois (β i ,t ,n )}

(S)

where n  sums over individuals. Because this model allows variation in vital rates 
across species and across individuals, it can potentially include demographic 
heterogeneity and environmental variance, in addition to demographic stochasticity. 
Eq. S can also be written as

N i ,t+1 I it+PoisBi ( {ζ i , t , n })+Pois(∑
n=1

N it

β i ,t ,n)
where PoisBi  is the Poisson binomial distribution. The mean of the Poisson 
binomial distribution is the same as that of the corresponding binomial distribution 

with N it  trials and success probability ζ́ it=
1
N it

∑
n

ζ i ,t ,n . The variance of the 

Poisson binomial is less than that of the corresponding binomial, but the difference 
will be slight if the ζ i , t ,n  are not too variable. For this reason, and because we lack 
sufficient independent time intervals to fit individual-level ζ i , t ,n  and β i ,t , n  
parameters to our data set, we instead work with mean ζ́ it  and β́ it  parameters 
and approximate the above formula with

N i ,t+1 I it+Bi(N it , ζ́ it )+Pois (N it β́ it )

(S)

where β́ it=
1
N it

∑
n

β i ,t ,n . We reiterate that the only approximation made here is to 

replace the full Poisson binomial with a binomial that has an effective per-capita 
survival probability ζ́ it . In our final model (see further down), this effectively 
means that demographic heterogeneity and demographic stochasticity are mixed 
together and cannot be estimated separately. This is necessary because the way to 
estimate demographic heterogeneity and demographic stochasticity separately 
would be to compare the variance and mean of the density-dependent component 
of survival over time and see how far they deviate from the binomial ideal, whereas 
in the present data we have only two independent time points so comparing the 
variance and mean in this way is not possible.

For the purposes of analyzing and fitting the model described by Eq. S, it is useful to 
decompose the survival and recruitment parameters as follows: ζ́ it=1−δ it−ηit  and 
β́ it=λ it+δit−1 . The parameter δ it  can be thought of as a demographic turnover 

rate; the parameters ηit  and λit , respectively, represent changes (positive or 
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negative) to survival and recruitment attributable to environmental events. This 
leads to

N i ,t+1 I i t+Bi(N it ,1−δit−ηit )+Pois (N it (λ it+δit−1 ))

(S)

The reason for parameterizing the model in this way is that the component of 
var (N i , t+1−N i ,t )  that scales with N i ,t

2  is then var (η it )+var ( λit)  (which we 

interpret as environmental variance, because it implies that var ( (N i ,t+1−N i , t )/N i ,t )  

is constant with abundance N i ,t ). The component of the variance scaling with 
N i ,t  (which we attribute to demographic variance) is a more complicated 

expression (not shown here, but see further down for the special case ηit=0 ).

Two problems with fitting the model described by Eq. S to our data are that (i) we 
have no estimates of immigration rates or regional abundances for most species; 
and (ii) from single census intervals (i.e., time series with only two independent 
time points), the ηit  and λit  environmental variance parameters cannot be 
estimated separately (essentially because one does not know how to apportion 
imbalances in the survival and recruitment rates of a given species to 
environmental variance in the survival versus the recruitment process). Our solution 
to the first problem is to ignore immigration (i.e., assume Iit=0 ). This will have 
the effect of inflating estimates of λit  for rare species (because immigration will 
be interpreted as local population growth, and immigration is more important for 
rare species), and slightly inflating the overall estimate of environmental variance 
var (λit) .

For the second problem, there are two reasonable solutions: omit the ηit  term, 
and thereby consider environmental variance only in recruitment, or omit the λit  
term, and thereby consider environmental variance only in survival. We followed the 
approach of Melbourne & Hastings (2008) and considered environmental variance 
only in recruitment. To justify the focus on environmental variance in recruitment, 
we looked at the site for which the most census intervals were available ( n=6  at 
BCI) and we calculated the mean survival rate śi  for each species i  across all 
six intervals. The theoretical variance in survival rate for each species, if there is no 
environmental variance, is approximately σ si

2
=śi(1− śi)/ Ń i  (following the binomial 

distribution with the mean abundance of the species Ń i ). Taking only species with 
abundance ≥10  (for which the coefficient of variation in N i  is not too high) we 
found that the actual variance of the survival rate of species i  across the six 
census intervals was 2.18σ si

2  (median), indicating the presence of environmental 
variance or demographic heterogeneity in the survival process. Performing a similar 
analysis on the recruitment rates, we found that the actual variance of the 
recruitment rate ĺi  of species i  across the six census intervals was 6.81σ li

2  

(median), where σ li

2
=ĺi /Ń i . Thus, although there is environmental variance and/or 

demographic heterogeneity in both the survival and recruitment processes, they are 
much more prevalent in the recruitment process (in the BCI data).
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Setting ηit=0  and Iit=0  then, we have the following population dynamics 
equation:

N i ,t+1 Bi (N it ,1−δit )+Pois (N it (λit+δit−1 ) )

(S)

where δ it  can again be interpreted as a demographic mortality or turnover rate , 
and λit  can be interpreted either as changes to recruitment due to environmental 
events or just as a population growth rate, because we have E (N i ,t+1∣N it=N )=λ itN
. Using the law of total variance we have

var (N i , t+1∣N it=N )=N 2 var ( λit )+N (E (λit )+2 E (δ it )−E (δ it
2 )−1)

(S)

and so the inter-census environmental variance (Engen   et al.   2005  ) can be 
estimated as var (λ it )  and the demographic variance as E (λit )+2E (δit )−E (δ it

2 )−1 .

For mathematical convenience, we express the inter-census mortality rates δ it  
and population growth rates λit  in terms of instantaneous mortality rates μit  

and instantaneous population growth rates ρit  so that δ it=1−e−μit ΔT it  and 

λit=eρ it ΔT it . The parameters ρit  and μit  (the ‘true’ and unknowable rate 
constants, for which we use Greek letters) must be distinguished from the observed 
rate constants rit  and mit  (Eqs. S and S), for which we use Roman letters. For 
small ΔT it , we can then use Eq. S to write

var (N i , t+1∣N it=N )≈ N2 ΔT it
2 var ( ρ )+N ΔT it (E ( ρ )+2 E (μ ) )=N2 ΔT it

2 ve+N ΔT it vd

(S)

where ve≡var (ρ)  and vd≡ E ( ρ )+2E (μ )  are the estimates of annualized 
environmental and demographic variance in the main text (Table 2). Eq. 5 in the 
main text comes directly from Eq. S.

Given forest census data containing counts of individuals ( N it ) and survivors (
Z it ), and time intervals ( ΔT it ), the model described by Eq. S can be used to 

estimate the distributions of μit  and ρit  across species (and hence the variance 
terms in Eq. S). We fitted models to each census interval at each site as described 
in Appendix S5 below. The fitting procedure was then repeated for the entire census 
period at each site (i.e., treating the period between the first and last census as a 
single long census interval) to explore the variance in abundance fluctuations on 
longer timescales.

Appendix S4: Derivation of asymmetric Laplace distribution of 
environmental variance
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To derive a functional form for the distribution of intrinsic population growth rates, 
ρ , note that variance of population growth rates is mathematically equivalent to 

environmental variance in our model (Appendix S3), so that the distribution from 
which population growth rates are drawn should reflect environmental factors. 
Working first with the inter-census rates λi≥0  rather than the instantaneous 
rates, let the distribution of λi  be the product of three things: a constant effect of 
the environment on all species in a given census measured by a parameter γ ≥0 , 
environmental events that increase the population growth rate following a 
distribution X  with support ¿ , and environmental events that decrease the 
population growth rate following a distribution Y  with support [0,1] . We chose 
power-law distributions for X  and Y  (Keitt & Stanley 1998; Marquet   et al.     
2005). Thus PX ( x )=(α−1 ) x−α  with α>1  and PY ( y )=(β+1) y β  with β>1 . Let 
the distribution from which λi  is drawn be Λ=γXY , so

PΛ ( λ )=
1
γ ∫

0

min (1,r / γ)
1
y
PX ,Y ( r

γy
, y)dy= (α−1 ) (β+1 )

(α+β ) γ
×{ ( rγ )

β

, r<γ

( rγ )
−α

, r ≥ γ

Now to convert to the instantaneous rates set Ρ=
1
ΔT

log Λ  and c=
1
ΔT

log γ . So

PΡ (ρ )=aeρ ΔT× { (
e ρΔT

ec ΔT )
β

, ρ<c

( e
ρ ΔT

ec ΔT )
−α

, ρ ≥ c

=aec ΔT×{e
(ρ−c )( 1+β) ΔT , ρ<c

e (ρ−c ) (1−α ) ΔT , ρ ≥ c

Redefining −(1−α )ΔT=ϕ1  and (1+β )ΔT=ϕ2  and the normalization constant 

k=aec ΔT , we have

PΡ (ρ )=k ×{e
( ρ−c )ϕ2 , ρ<c
e (c−ρ )ϕ1 , ρ ≥ c

(S)

Eq. S is an asymmetric Laplace distribution and defines the distribution used for 
ρ  in the main model.

Appendix S5: Likelihood of observations

To fit the models, we calculated likelihoods of population changes and survival given 
a set of model parameters. We used a hierarchical modeling approach in which 
there are parameters for the community-wide models describing the 
‘hyperdistributions’ of ρ  and μ , plus rate parameters ρi  and μi  fitted for 
every species. We assumed a lognormal distribution of mortality (turnover) rates 
(Condit   et al.   2006  ) and an asymmetric Laplace (exponential) distribution of 
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population growth rates (Appendix S4). The ‘true’ and unknowable rate constants
ρi  and μi   must be distinguished from the observed rate constants ri  and 
mi=−(1/ΔT i) log (Z i /N i)  calculated from the data (Eqs. S and S). The full 

hierarchical model for a single community, assuming a lognormal distribution of 
turnover rates μ  and the asymmetric Laplace distribution (Eq. S) of ρ  includes 
the following parameters:
• Ω  and σ , the two parameters of the lognormal distribution of turnover 

rates;

• c , ϕ1  and ϕ2 , the three parameters of the asymmetric Laplace 
distribution of population change rates;

• μi , a fitted turnover rate constant (equal to the mortality rate), one per 
species;

• ρi , a fitted population change rate, one per species.

The use of a hierarchical Bayesian approach allows the model to be divided into 
separate components, making it easier to understand and to write the likelihood 
functions. There are two levels in this model: The species level parameters, with 
distributions described by hyperparameters for the community, and the 
hyperparameters themselves.

All these parameters must be estimated given a data table containing N i+1 , N i

, Z i  and ΔT i  for every species. A typical tropical forest model thus requires 
fitting 2k+5≈400  to 2400  parameters. Using hierarchical Bayesian methods, it 
is straightforward to estimate these parameters and their confidence (credible) 
intervals. Confidence intervals on the population growth ( ρi ) and turnover ( μi ) 
parameters for rare species will necessarily be much broader than those for 
common species.

Likelihood functions are written separately for each species. First consider the 
likelihood of a particular value of the turnover rate constant μ  given that Z   
individuals out of N 1  survived over ΔT  years. We express the likelihood as a 
binomial probability following Condit et al. (2006) (we drop the species subscript 
i  for ease of notation):

L (μ∣N1, Z , ΔT )=(N 1

Z ) (e−μ ΔT )
Z

(1−e−μΔT )
N1−Z

Next consider the likelihood of a rate of population change ρ  given a turnover 
rate μ  and a population change from N1  to N 2  over ΔT  years. To 
facilitate fast calculation, we employ a normal approximation to this likelihood using 
the true mean M=e ρΔT N1  and variance V=(eρ ΔT−(e−μ ΔT

)
2 )N 1  of the underlying 

model:

L ( ρ∣N1, N2 , ΔT ,μ )≈
1

√2πV
exp (−(N2−M )

2

2V )
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This says that the probability of observing a future population state N 2  follows a 
normal distribution centered on the expected future population size M=e ρΔT N1  
and with variance V  that depends on population size, population growth rate 
ρ  and turnover rate μ  and the time period ΔT . The statement that the 

future population size N 2  is centered on eρ ΔTN 1  is an empty one: it is simply 
the statement that the population has grown by eρ ΔT . The important part of the 
equation is the assertion that the future population size is distributed normally with 
variance given approximately by V . This is the expected variance due to 
demographic variation, and it is necessary to know this to build the likelihood 
formulation and fit the parameters. We confirmed the validity of the normal 
approximation by simulations (not shown).

The top level of the model includes the hyperdistributions, or community-wide 
distributions, of all the species-level parameters μi  and ρi . For ρi ,

L (Γ ,ϕ1,ϕ2∣ρ i)=PΡ (ρi∨Γ ,ϕ1 ,ϕ2)

where PΡ  is defined by Eq. S. For μi ,

L (Ω ,σ∣μi )=PМ (μ i∣Ω ,σ )

where PМ  is the probability density function of the lognormal distribution.

The overall log-likelihood of the model in a forest of k  species over a period 
between census j  and census j+1  is then given by

LL j=∑
i=1

k

{log L (μij∣N ij , Z ij)+ logL (ρij∣N i , j+1 ,N ij , μ ij)+ logL (Γ ,ϕ1 ,ϕ2∣ρij )+log L (Ω ,σ∣μij )}

To find the maximum likelihood, we used a Gibbs sampler with a Metropolis update 
rule, allowing each of the several hundred parameters for a single model to be 
updated one at a time (Gelman   et al.   1995  ; Condit   et al.   2006  ; Rüger   et al.   2009  ). 
We ran the samplers for 10,000 steps and discarded the first 2000 as a burn-in (the 
samplers appeared to converge after 1000 steps). The mean from the last 8000 
steps of the sampler was used as the best estimate for every parameter, and the 
0.025 and 0.975 quantiles as the limits of 95% credible intervals.

Appendix S6: Estimating abundance fluctuations from the fitted model

If the time interval between censuses ΔT  is not too large, we can approximate 

the variance of abundance fluctuations var (N 2−N 1∨N1 )=E ( (N 2−N1 )
2∣N1 )  by 

plugging the estimated values of demographic variance vd  and environmental 
variance ve  (Table 2 in the main text) into Eq. S. To calculate this variance more 
precisely for larger ΔT , or to calculate other statistics such as 

E ( log {(N2−N 1)
2}∣N1 )  (this statistic was used for Figs. 1–2 and Figs. S1–S3, because 

of the logarithmic axis scales), it is necessary to employ numerical methods. Given 
a time interval ΔT , an initial abundance N1 , and a fitted model (Appendices 
S2–S5), the general procedure is as follows:
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(1) Generate random realizations of ρ  and μ  from the fitted distributions.

(2) Calculate λ=eρ ΔT , δ=1−e−μΔT .

(3) Calculate realizations of N 2  from Eq. S.

(4) Calculate corresponding abundance changes N 2−N1 .

(5) Calculate statistics on the abundance changes, e.g., var (N2−N 1∨N1 )  or 

E ( log {(N2−N 1)
2}∣N1 ) .

Using more realizations in step (1) leads to more precise estimates of the statistics.
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Table S1. Values of the Akaike Information Criterion (AIC) for the full fitted model, 
which includes asynchronous environmental variation and demographic 
heterogeneity, and for models that exclude one or both of these processes (“dem. 
het.” = demographic heterogeneity; “asynch. env. het.” = asynchronous 
environmental variance). For each site and census interval, the lowest AIC is in bold 
face. Note that the final two columns are models of synchronous environmental 
variance, in which the expected population growth rate is the same for all species in 
a given census interval.

AIC

Site and census 
interval

Full model 
(async. env. var.

+ dem. het.) No dem. het
No asynch. 

env. var.

No asynch. 
env. var.

No dem. het.

Edoro 1–2 2853.9 6144.5 9231.2 9664.3
Edoro 2–3 2981.3 3516.3 6267.0 7110.3
Lenda 1–2 2538.7 2892.4 4290.0 3975.3
Lenda 2–3 2780.8 3055.5 4799.1 4545.1
Pasoh 1–2 6357.8 5655.9 8019.5 6306.8
Pasoh 2–3 8044.3 7044.6 13484.2 12859.0
Pasoh 3–4 7483.3 9270.2 12001.9 11031.6
Pasoh 4–5 8245.0 8040.5 13945.5 15266.8
Lambir 1–2 11057.0 9781.7 16138.1 15508.9
Lambir 2–3 22897.2 21742.4 66209.1 73071.0
Lambir 3–4 22544.2 20607.4 72792.9 80643.6
Korup 1–2 5046.4 6175.8 17455.0 18066.2
Sinharaja 1–2 2947.8 7452.2 16627.8 13644.6
Sinharaja 2–3 2168.1 4441.4 8241.7 6529.5
Khao Chong 1–2 4704.2 4339.6 6512.9 7315.6
Khao Chong 2–3 4594.7 3829.6 5783.7 5206.4
BCI 1–2 3176.9 4715.3 7789.2 9403.0
BCI 2–3 3371.6 7429.0 11539.8 16217.9
BCI 3–4 3090.9 8180.6 14898.2 12470.2
BCI 4–5 3240.2 4173.7 11434.2 10287.3
BCI 5–6 3236.9 2947.1 9135.0 11675.7
BCI 6–7 3198.0 2838.0 10076.8 11324.8
Mudumalai 1–2 629.6 7182.4 3642.2 11054.8
Mudumalai 2–3 617.1 3933.9 2483.8 5276.7
Mudumalai 3–4 634.7 826.1 8566.6 11655.2
HKK 1–2 2680.3 5373.8 8326.5 10102.3
HKK 2–3 4042.6 6108.5 63422.5 61507.8
HKK 3–4 3732.4 3306.6 36695.7 38640.1
Palanan 1–2 3195.0 2593.5 18875.2 18417.8
Palanan 2–3 2904.8 2913.8 4373.6 4342.8
Fushan 1–2 1172.8 1412.2 4959.3 5541.3
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Table S2. Fits of the full population model to tree population change data at each 
site for each census interval (supplementary to Table 2 in the main text).

Site and census 
interval

Parameters for fitted 
population growth rate 
( ρ ) distribution

Parameters for fitted 
mortality rate ( μ ) 
distribution

c Φ1 Φ2 Ω σ

Edoro 1–2 -0.0075 53.7 91.2 -3.930 0.829
Edoro 2–3 -0.0081 40.7 84.5 -3.710 0.796
Edoro 1–3 -0.0058 54.8 78.0 -3.871 0.857
Lenda 1–2 -0.0005 153.7 96.4 -4.024 0.818
Lenda 2–3 -0.0059 79.1 64.8 -3.661 0.711
Lenda 1–3 -0.0018 121.4 59.8 -3.812 0.779
Pasoh 1–2 -0.0107 184.8 176.0 -4.037 0.427
Pasoh 2–3 -0.0073 61.6 148.4 -3.743 0.497
Pasoh 3–4 -0.0082 196.7 80.0 -3.541 0.547
Pasoh 4–5 -0.0147 47.2 84.9 -3.497 0.506
Pasoh 1–5 -0.0088 105.4 108.1 -3.837 0.556
Lambir 1–2 0.0054 93.4 147.2 -4.350 0.700
Lambir 2–3 -0.0001 53.8 112.6 -3.853 0.654
Lambir 3–4 -0.0030 51.4 260.2 -3.881 0.474
Lambir 1–4 0.0024 77.8 150.6 -4.193 0.530
Korup 1–2 -0.0043 78.7 99.0 -4.018 0.834
Sinharaja 1–2 -0.0060 94.1 65.1 -4.019 0.766
Sinharaja 2–3 -0.0094 172.7 89.9 -3.840 0.530
Sinharaja 1–3 -0.0083 129.7 72.3 -3.902 0.636
Khaochong 1–2 -0.0036 61.3 83.1 -3.745 0.744
Khaochong 2–3 -0.0087 70.3 105.9 -3.617 0.649
Khaochong 1–3 -0.0037 83.2 71.9 -3.634 0.679
BCI 1–2 0.0072 44.2 27.4 -3.102 0.788
BCI 2–3 0.0010 40.2 40.2 -3.294 0.876
BCI 3–4 -0.0060 73.2 38.3 -3.224 0.850
BCI 4–5 -0.0185 34.3 49.6 -3.146 0.774
BCI 5–6 -0.0143 30.9 80.5 -3.235 0.776
BCI 6–7 -0.0086 28.4 95.5 -3.280 0.746
BCI 1–7 -0.0042 56.8 47.1 -3.322 0.825
Mudumalai 1–2 -0.0049 98.1 17.3 -3.004 1.061
Mudumalai 2–3 -0.0046 40.0 14.6 -3.061 1.158
Mudumalai 3–4 -0.0081 13.2 29.9 -3.660 1.286
Mudumalai 1–4 -0.0090 28.5 21.3 -3.340 1.078
HKK 1–2 -0.0074 33.2 27.7 -3.126 0.922
HKK 2–3 -0.0095 14.4 53.4 -3.633 0.784
HKK 3–4 -0.0004 16.4 55.6 -3.075 0.863
HKK 1–4 -0.0016 25.3 42.9 -3.481 0.909
Palanan 1–2 0.0125 22.1 118.8 -4.015 0.496
Palanan 2–3 -0.0123 61.3 96.5 -3.707 0.568
Palanan 1–3 0.0020 42.5 139.3 -3.892 0.498
Fushan 1–2 -0.0019 51.0 44.6 -3.664 1.001
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Figure S1 Squared abundance changes (vertical axes; log scale) as a function of 
initial abundance (horizontal axes; log scale) as in Fig. 1 in the main text but with 
synchronous environmental variance added to the model of demographic variance 
(blue dashed line with shaded 95% confidence intervals). Gray points represent 
decreases in abundance and red points represent increases in abundance.
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Figure S2 Squared abundance changes (vertical axes; log scale) as a function of 
initial abundance (horizontal axes; log scale) in the Edoro, Lenda, Pasoh, Lambir, 
Khao Chong and Palanan forests over different census intervals (panels; number 
range the census interval; see main text Fig. 1 for most recent census interval at 
each site). Each red point shows data for one species. Blue dashed lines with 
shaded 95% confidence intervals show the predictions of neutral models. Green 
dashed lines show a best fit power law with exponent 2.0, which corresponds to a 
model where the effects of environmental variance are perfectly correlated across 
individuals within species. Black curves with shaded 95% confidence intervals show 
the fitted model.
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Figure S3 As for Fig. S2 but for the BCI, Mudumalai and HKK forests.


