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Abstract

Tropical forests are mega-diverse ecosystems that display complex and non-equilibrium dynamics. However, theoretical
approaches have largely focused on explaining steady-state behaviour and fitting snapshots of data. Here we show that
local and niche interspecific competition can realistically and parsimoniously explain the observed non-equilibrium regime
of permanent plots of nine tropical forests, in eight different countries. Our spatially-explicit model, besides predicting with
accuracy the main biodiversity metrics for these plots, can also reproduce their dynamics. A central finding is that tropical
tree species have a universal niche width of approximately 1/6 of the niche axis that echoes the observed widespread
convergence in their functional traits enabling them to exploit similar resources and to coexist despite of having large niche
overlap. This niche width yields an average ratio of 0.25 between interspecific and intraspecific competition that
corresponds to an intermediate value between the extreme claims of the neutral model and the classical niche-based model
of community assembly (where interspecific competition is dominant). In addition, our model can explain and yield
observed spatial patterns that classical niche-based and neutral theories cannot.
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Introduction

The classical competition niche theory (CCNT) based on the

Lotka-Volterra competition equations and Hutchinson’s multidi-

mensional niche [1,2] generally predicts the coexistence of a

relatively large number of species with disjoint niches at

equilibrium. At the expense of substantially increasing their

complexity (as measured by the number of parameters), more

complex versions of these classical models include variation in the

values of model parameters across space (for instance in different

micro-habitats or patches) and differential species dispersal

between different sub-habitats and may predict the equilibrium

coexistence of a larger number of species [3]. Thus, neither model

may account for and thus explain the non-equilibrium coexistence

of hundreds of species in megadiverse communities such as

saturated tropical forests [4]. More recently, the neutral theory of

biodiversity (NTB) [4] assuming that ecological dynamics stem

from the ecological drift of functionally equivalent species with

identical niches, has been able to predict the relative species

abundances (RSA), the species-area relationship (SAR) and main

biodiversity indices in tropical forests with only four parameters

with an accuracy and consistency that have eluded the classical

niche-based theory [4–5]. In the same vein as the classical niche-

based theories, the NTB also predicts the (stochastic) equilibrium

of community metrics with the species loss due to ecological drift

being balanced by dispersal and/or speciation [4]. The NTB has a

clear gain in predictability of macroscopic (RSA, SAR, etc)

variables with a few parameters compared with the classic niche-

based approaches [4–5]. However, not being a spatially-explicit

theory, the original, standard NTB cannot predict distinctive

features of the spatial dynamics of megadiverse tropical forests [6].

The NTB has also been criticized for ignoring the strong evidence

of functional [7] and fitness differences [8] among tree species and

for incorrectly predicting the observed rates of species turnover [9]

and of spatial differentiation at biogeographic scale [10].

We believe that CCNT and NTB share two fundamental

structural limitations when applied to understand the dynamics of

tropical forests. First, they rely on equilibrium solutions to

understand the community dynamics of these forests and their

theoretical predictions are typically compared with census data of
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tropical forest plots viewed as snapshots [4,11]. However, these

large, permanent tropical forests plots that have been exhaustively

and repeatedly censused over time [12] clearly reveal that tropical

forests are far from stationary. For example, the plot at Barro

Colorado Island (Panama) has lost 37 species in 23 years, and the

plot at Bukit Timah (Singapore) had an average rate of species loss

of 8% between consecutive censuses [11]. Being far from

equilibrium, fitting detailed snapshots of tropical forest data can

only describe transitory configurations but cannot help to

understand the mechanisms underlying the observed dynamics.

The second problem of both CCNT and NTB is the reliance on

mean-field approximations stemming from the ‘‘well-mixed’’

assumption that clearly fails when applied to sessile individuals

like trees having largely local recruitment and potentially suffering

from local interference competition for resources. Thus, neither

CCNT nor NTB are suitable for the realistic, parsimonious

modelling of tropical forest dynamics, nor can they predict the

large array of metrics characterizing the spatio-temporal dynamics

of these forest communities.

Here we propose what in our view is the simplest non-

equilibrium, spatially explicit model of community dynamics of

tropical forests. In this model, trees of different species compete

locally with neighbouring individuals depending on their degree of

niche overlap. This model does not pretend to generate

‘‘photorealistic’’ representations of tropical forest plots (i.e. to

build a model depicting the actual locations occupied by each tree

species and reproduce their dynamics). Rather our aim is to

formulate a minimal set of realistic biological features sufficient to

accurately predict different commonly used biodiversity metrics as

well as their evolution. In this regard, we chose the simplest

possible niche space i.e. a finite, one-dimensional axis with all

species having identical niche width and, as in NTB [4], our model

did not consider the size structure of populations. This is not to

imply that ecological niches are homogeneous and one-dimen-

sional and that species’ size structures are irrelevant to understand

the dynamics of tropical forests, but that adding further complexity

to the model was unwarranted at this stage. Competitive

interactions among individuals of sessile, seed-bearing plants are

known to take place within limited neighbourhoods with locally

changing species composition [13]. This, together with the strong

dispersal and recruitment limitation of tropical tree species [14],

required formulating a spatially explicit, individual-based model

[15]. Always maintaining the maximum possible simplicity, we

represented the positions of individual trees in a regular square

lattice i.e. a cellular automaton (CA) model [16]. Therefore,

interspecific competition occurs if and only if individuals of

different species are both neighbours in space and the species are

relatively close along the niche axis so as to have important niche

overlap that determines the strength of their competitive

interaction (see Methods). While other individual-based e.g. [17–

19] and mean-field e.g. [20–21] models of community dynamics

have been proposed, their focus had been the contrast between

modelling predictions of niche-based and neutral theories rather

than the validation of theoretical predictions through the

comparison with empirical data.

Results and Discussion

The model was able to fit the main biodiversity metrics used to

characterise community structure such as RSA for the nine

tropical forest plots studied (Table 1, Fig. 1) and SAR for the two

plots for which this information was available: Barro Colorado and

Table 1. Observed (bold) and predicted species richness for all trees with diameter at breast height (dbh)$1 cm for the first
census in nine tropical forest plots.

Forest Area (ha) H1 L s, m, T Species richness, S1

Lambir 52 0.863 600 0.073, 0.05, 0.2 1204, 1159

(Malaysia) 1204, 116069

Pasoh 50 0.842 580 0.085, 0.11, 0.5 823, 819, 811, 808

(Malaysia) 823, 82162, 81564, 80865

Yasuni 50 0.830 390 0.076, 0.13, 2.0 1154, 1087

(Ecuador) 1154, 109168

La Planada 25 0.745 340 0.083, 0.09, 1.0 241 221

(Colombia) 241, 22267

Sinharaja 25 0.741 450 0.076, 0.08, 0.0 207, 205

(Sri Lanka) 207, 20562

Korup 50 0.718 570 0.076, 0.13, 0.3 495

(Cameroon) 495

Barro Colorado 50 0.694 500 0.077, 0.10, 3.0 320, 318, 303, 299, 292, 283

(Panamá) 320, 31464, 30065, 29366, 28767, 28167

Fushan 25 0.692 340 0.085, 0.09, 0.0 110

(Taiwan) 110

Huai Kha Kaengh 50 0.682 280 0.077, 0.12, 0.0 295

(Thailand) 295

Data from Center for Tropical Forest Science [11]. The predicted values of species richness correspond to averages 6 std of 100 model simulations for the best estimates
of model parameters. H1 is the equitability or standardized Shannon-Weaver diversity for the first census in each forest, L is the lattice size and the parameter values
providing the best fit to empirical data where s is the species’ niche width, m is the dispersal rate from outside each neighbourhood and T is the stochasticity
parameter.
doi:10.1371/journal.pone.0082768.t001
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Pasoh (Fig. 2a) with similar accuracy as NTB. Furthermore, the

model could also fit and explain other biodiversity metrics related

to spatial aggregation that NTB cannot. First, the model

accurately predicted the short-scale (,100 m) probability F(r) that

two randomly selected trees r meters apart inside a plot are

conspecific (Fig. 2b). The NTB can not accurately predict the rate

of decay of F(r) at short distances [22]. The local nature of

competitive interactions and dispersal limitation (largely within a

neighbourhood) can account for the behaviour of F(r) at small

distances (Fig. S1 in Information S1). This fast-decay of the spatial

correlations between sites is quite common in many cellular

automata with short range interactions [16]. Second, we also

obtained the observed tendency of rarer species to be more

strongly aggregated in tropical forests, a feature that remains to be

explained [6]. Our results suggest that this pattern can be

understood in terms of local competition and is related to another

finding obtained from our model: the RSA distribution represent-

ed on the niche axis displays a pattern with clumps and gaps

(Fig. 3a) that is qualitatively similar to the one obtained using

Lotka-Volterra competition equations [23]. We found that the

niches of rarer species were located in the gaps between clumps in

the niche space and that these rare species turned out to be poorer

competitors. This association can be illustrated by considering the

species with abundances that exhibited the highest values for the

aggregation index V0R10 for both the empirical and theoretical

cases. For instance, Spachea membranacea had an abundance of 14

trees and V0R10 = 698.3 in Barro Colorado in the 1995 census

[24]. The corresponding theoretical species # 253 for a particular

simulation of Barro Colorado in 1995 also had an abundance of

14 individuals and V0R10 = 1031.7 (Fig. 3c). Notice from Fig. 3d

that the fitnesses f of individuals of species # 253 were in general

low. The association between rarity and spatial aggregation arose

because a rare species in our model could only avoid competitive

displacement by being surrounded by either conspecifics or by

individuals of other species with which they had a minimal niche

overlap. Nevertheless, we want to remark that any similarity

between the actual spatial distribution of individuals of Spachea

membranacea and of the theoretical species # 253 shown in Figs. 4b

and 4c is pure coincidence.

A central finding was that the species niche width s in all the

nine tropical forests analysed was roughly 0.08 (0.07860.005) and

hence that 95% of each species’ niche corresponded to roughly 1/

6 of the entire niche axis. It is quite remarkable that only a narrow

set of niche widths allowed fitting the spatial and temporal

dynamics in all tropical forests considered. This seemingly

universal feature echoes the widespread convergence of functional

traits leading to shade tolerance and nutritional and hydric niches

axes leading to a large niche overlap in tropical tree species [14].

The fact that 2s<1/6 implies by eq. (2) that the strength of

interspecific interactions is on average one-quarter of the

intraspecific competition which, by construction, is equal to unity

i.e. Æaijæ<0.25Æaiiæ. The ratio (Æaijæ/Æaiiæ)<0.25 corresponds to an

intermediate value between the extreme claims of the neutral

model (where species are functionally identical and have

independent dynamics) and the classical niche-based model of

community assembly (where interspecific competition is domi-

nant). There is strong evidence of density dependent regulation

through intraspecific competition acting over short distances in

tropical trees species [14,25]. The strength of interspecific

competition predicted by our model was however closer to

Figure 1. Observed (bold) and predicted distribution of relative species abundances (RSA) for all trees with diameter at breast
height (dbh)$1 cm for the first census of nine in nine tropical forest plots. Data from Center for Tropical Forest Science [11]. The predicted
(grey) are averages 6 std of 100 model simulations for the best estimates of model parameters of each forest (see Information S1 for comparisons
with other censuses). The calculation of the RSA is explained in Information S1.
doi:10.1371/journal.pone.0082768.g001
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neutrality than to classical niche-based theories of interspecific

competition [4].

A unique feature of our model is its capacity to accurately

predict the observed dynamics of the species richness (Table 1) and

of the RSA distributions (Fig. 1; Figs. S2–S4 in Information S1) in

the six permanent plots censused more than once (Lambir, Pasoh,

Yasuni, La Planada, Sinharaja and Barro Colorado; Fig. 1). Most

analyses of tropical forests to date have considered and predicted

biodiversity metrics of consecutive censuses as independent,

isolated snapshots [4,12]. To our knowledge, this is the first

mechanistic model capable of realistically and parsimoniously

explain the observed dynamics of the main biodiversity metrics

used to characterise community structure in tropical forests. In

addition, for the two permanent plots for which there were at least

four censuses (Pasoh and Barro Colorado), the model could predict

the observed compositional changes of tree communities over time

(Fig. 4) using the decay in the coefficient of determination R2 [26–

27]. Furthermore, the observed decay in community similarity for

these forests was linear and consistent with the very slow

convergence to distant equilibrium in community composition

[26] that our model would yield if ran for a exceedingly long

time frame (approximately 109 individual replacements). This

equilibrium state would consist in the stable coexistence of only a

handful tree species after all others drifted away to extinction,

which is exactly the result found by NTB in the absence of

speciation countering species loss [4]. Had we been interested in

applying the model for much longer time frames, we would have

needed to consider speciation but the latter could be safely ignored

when predicting community dynamics at the time scale of years to

decades.

Conclusions
Much like in statistical physics, our model shows that it is

unnecessary to model the detailed ‘‘microscopic’’ dynamics in a

landscape to accurately predict the aggregate, macroscopic

variables characterising the composition and dynamics of large

and complex ecosystems such as tropical forests. In fact, we found

that local competitive interactions coupled with limited, stochastic

dispersal can give rise to the non-equilibrium dynamics for a

seemingly universal range of niche widths identical to all tree

species that may be interpreted as ‘‘neutral’’. The latter may

explain why many results reported here could be indistinguishable

from those predicted by the NTB. Other modelling results have

shown that neutral-like patterns of community structure need not

Figure 2. Species-area curves (SAR) and spatial patterns of tree species richness for selected censuses of tropical forests. Predicted
curves correspond to averages over 100 simulations for the best estimates of model parameters (Fig. 2a), and the error bars correspond to one std. a.
Observed and predicted (grey line) number of tree species with dbh$1 cm for sampling areas of different sizes at Barro Colorado (1990, triangles)
and Pasoh (1987, crosses). Estimated curves for Barro Colorado and Pasoh were calculated using data from the Center for Tropical Forest Science [11]
and dividing the entire plots into non-overlapping quadrats [29]. The calculation of the SAR is explained in Information S1. b. The estimated
(triangles) and predicted probability F(r) that two randomly selected trees of dbh$10 cm located r meters apart for the 1990 census at Barro
Colorado plot are conspecific. The curves are shown only for 10#r#100 m, a range of distances for which the NTB fails to reproduce the estimated
F(r) [6].
doi:10.1371/journal.pone.0082768.g002
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imply that neutral processes drive community dynamics [28].

However, the functional similarity among species than can be

interpreted as neutrality is not a fundamental building assumption

of our model but rather the emergent outcome [23] arising from

the interplay between slow competitive displacement among

functionally equivalent species and dispersal limitation, both of

which are known to occur in tropical forests [26–28].

Large plots of tropical forests exhibit a noticeable decay of tree

species richness over the scale of years to decades [4–5,24] thus

requiring to treat them as non-equilibrium communities. While

complex systems at equilibrium can be fully described by their

most likely statistical configuration as the NTB [4] and the Maxent

theory [29] do, describing non-equilibrium systems requires

including the mechanisms that bring about their dynamics [30],

namely local competitive interactions and limited dispersal among

functionally equivalent species. It is during the long transient, out-

of-equilibrium regime that our model predicts the species niche

widths seemingly have a universal value of 2s<1/6 in all forest

plots. Further, our model predicts and explains the set of metrics

describing the non-equilibrium dynamics of community structure

and the spatial patterns of species distribution while others have

successfully fitted different community metrics such as RSA [4,12]

and SAR [31–32] only after assuming equilibrium. Having a

complexity comparable to the NTB, our mechanistic model may

constitute an alternative to high-dimensional niche-based models

of interspecific interactions as well as to provide further insights on

the spatio-temporal community dynamics of tropical forests.

Methods

The Model
All L6L cells of the CA are occupied by one individual,

representing a tree belonging to a given species s = 1, 2,…,n (i.e.

the number of individuals, N = L6L, remains constant as in the

NTB [4]). The entire community was closed to dispersal from the

outside and we consider periodic boundary conditions to avoid

border effects. We assumed the simplest one-dimensional, finite

niche scaled in the unit interval wherein the resource utilization

function of each species s is defined by a normal distribution P(s)

whose mean m(s) and standard deviation s(s) indicate the position

and width of its niche. The positions of the species niches were

chosen by randomly drawing the values of m(s) from a uniform

distribution at the beginning of each simulation and were not

changed during the simulation. Each focal individual, located at

site i, belonging to a species si only interacts with its eight

immediate neighbours (that together with i define the Moore

Figure 3. Relation between species rarity and spatial aggregation for Spachea membranacea at Barro Colorado in the 1995 and
model species # 253. Both species have the highest spatial aggregation, as measured by the aggregation index V0R10 and the same abundance
of 14 individuals. a. The clumpy distribution of relative abundance of species in the finite niche axis, showing that species # 253 (niche position
x = 0.8179) lies in a gap between clumps of coexisting species. b. The observed distribution of Spachea membranacea at Barro Colorado in the 1995
census [11,24] yielding V0R10 = 689.3. c. Spatial distribution of a model species # 253 in grey. The selected 969 sublattice shows the species identity
of individuals in the immediate neighbourhood containing all 14 individuals of model species # 253, yielding V0R10 = 1031.7. d. The set of fitnesses
in the same sublattice containing all 14 individuals of model species # 253. Individuals of the rare species # 253 (in grey) are poorer competitors
because they have lower fitnesses than most of their immediate neighbours.
doi:10.1371/journal.pone.0082768.g003
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neighbourhood Mi). This is of course a simplification, since the

effective neighbourhood size of tropical trees on average involves a

larger numbers of neighbours [22–23] but it varies significantly

with the focal species [33]. The strength of its competition with a

neighbour of species sj located at site j, aij, is proportional to the

niche overlap between species si and sj, and can be written as [2]

(see also [34] and references therein):

aij~

Ð1
0

Psi
(x)Psj

(x)dx

0:5 �
Ð1
0

P2
si

(x)dxz
Ð1
0

P2
sj

(x)dx

 ! , ð1Þ

which in turn can be expressed in terms of the standard error

function ‘‘erf’’ as:

aij~e
{((mi{mj )=2s)2

2
erf((2{mi{mj)=2s)zerf((mizmj)=2s)

erf((1{mi)=s)zerf(mi=s)zerf((1{mj)=s)zerf(mj=s)
,
ð2Þ

where mk; sk) and sk; sk). We further assumed that all species

were functionally and demographically equivalent by having the

same niche width: si = (which could be regarded as an average

niche width). Hence, the fitness f(si) of a focal individual of species

si located at site i is given by f (si)~8{
P

j=i[Mi

aij , where the ‘‘8’’

corresponds to the numbers of neighbours of i and it ensures that

f(si) is always non-negative. Thus, f(si) has its maximum value when

the focal species si has minimal overlap with its eight neighbours,

and minimal when their niche overlaps are maximal. The

functional equivalence between species is consistent with the

chosen normalization for the aj (Eq. 1) to assure that the matrix a
is symmetric.

Model dynamics consisted on the sequence of individual

replacements by another individual (of the same or other species)

in each spatial location. Individual replacements are modelled as a

stochastic CA [35–36]. Hence, each simulation step consists of the

potential replacement of one of the L6L individuals. The model

contains three parameters that dictate the dynamics of individual

replacements: the width of each species niche a, the dispersal rate

from outside each neighbourhood m, and the stochasticity

parameter T. The replacement rule was as follows: (I) A focal

individual of species si, located at site i, is randomly chosen (with

probability 1/L6L). (II) This focal individual is replaced with

probability m by the descendant of another randomly chosen

individual of species sk from outside its neighbourhood Mi. And

with probability (1-m)*Pr(s; siRsj) by a randomly chosen neighbour

of species sj where Pr(s; siRsj) is given by the Glauber update rule

Pr(si?sj)~ 1zexp { f (si){f (sj)
� �

=T
� �� �{1

, commonly used in

lattice spin models [37–38]. Thus, the probability that the focal

individual si was replaced by its neighbour sj was greater as the

difference between individual fitnesses f(sj) and f(si) increased. The

parameter T modulated the probability of deterministic replace-

ment to the difference in fitnesses between each pair of species si

and sj. The larger the value of T, the closer Pr(siRsj) approaches to

K i.e. the replacement of the focal individual by a neighbour is a

totally random process. On the contrary, as T approaches its

minimum value of 0, Pr(siRsj) approaches to 1 and the change of

the focal individual from si by a local neighbour sj becomes

deterministic and is accepted if and only if f(si),f(sj). Therefore,

both m and T introduce stochastic variation in the local

replacement of focal individuals in the model: the former as the

recruitment from dispersal of any species outside each local

neighbourhood through the seed dispersal by wind or animals and

the latter in the identity of the species replacing the focal

individual. Our modelling of local recruitment reflects the well-

known dispersal limitation observed in tropical forests whereby

most recruits are found within a few meters of the focal individual

that produced them [14,25].

For each forest, we simulated the dynamics for different initial

conditions involving each time a random choice of the species

niche positions {m(s)} (drawn from a uniform distribution), and of

the spatial positions for all L individuals (in such a way that each

species s had the same probability (1/L6L) of occupying each site).

Estimation of Parameters
Our model was tailored to explain the spatio-temporal

dynamics of all trees of diameter at breast height (dbh) $1 cm

in nine large (.25 ha), permanent plots of tropical forests in eight

different countries that constitute the best available data of these

mega-diverse ecosystems. These permanent tropical forest plots

are essentially saturated, i.e. the total number of individuals

increases linearly with the area inventoried [4,14]. Therefore, for

each analyzed plot, L was chosen in such a way that L6L was the

closest multiple of ten to the maximum number of trees (with

dbh$1 cm) measured along the different censuses, Nmax
e , while

the initial number of species, n, was set equal to the value of the

species richness found for the first census, S(1)
e (the subscript e

stands for ‘‘empirical’’ and then X (k)
e will denote the observed

value for quantity X in census number k). For example, for Barro

Figure 4. Observed and predicted compositional changes in
tree communities between censuses at Pasoh and Barro
Colorado forests. Compositional changes are measured by the
coefficient of determination R2 of the regression of the log-transformed,
time-lagged population abundance of all species between censuses for
all individuals with dbh$1 cm and species with two or more individuals
in first census of each forest [25,26]. At a time lag of zero, no change in
community composition can yet have occurred, and thus R2 is by
definition equal to unity. As time elapses between censuses, the
progressive compositional changes are reflected by the decay in R2:
empirical results for Barro Colorado (triangles) and Pasoh (crosses), and
predicted values, corresponding to averages over 100 simulations with
error bars equal to one standard deviation for the best parameters
estimates for each forest. The model predicts a nearly perfectly linear
decay in average values of R2 that is indistinguishable from the
prediction from NTB.
doi:10.1371/journal.pone.0082768.g004
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Colorado (Nmax
e = N (3)

e = 244,080 for the third census of 1990 and

S(1)
e = 320 for 1982): L = 500 and n = 320.

It is unfeasible to estimate the values of parameters m, s, and T

using maximum likelihood methods and the data from the

permanent forest plots because the potential number of local

replacement rules quickly becomes cumbersome as the number of

states (species) and neighbours increase. In our case, the number of

local replacement rules would be nn9

the ‘‘9’’ comes from the size

of the Moore neighbourhood. We used an alternative method

based on a sequential procedure to estimate the parameters s, m,

and T providing the best fit to the observed dynamics as

characterised by a set of common metrics in the set of censuses

of each forest (Fig. 1). Actually, it turns out that while sand m were

enough to reproduce with accuracy the values of all biodiversity

metrics found at the first census of each forest plot, T was a ‘‘fine

tuning parameter’’ required to improve the agreement between

observed and predicted values of the RSA and the Shannon

equitability index H = {
Pn
s~1

Ns

N
log

Ns

N

� 	
=log(n) (where Ns is the

abundance of species s) calculated for subsequent censuses. For this

reason T = 0 for all the forest plots for which there is only one

census (see Fig. 1a). Thus in a first stage (Fig. 5), using only data of

the first census, we estimated s and m. To do this we systematically

searched the array of values in the plane s -m generated by varying

s in (0.05, 0.1) in steps of Ds= 0.001 and m in (0.02, 0.12) in steps

of Dm = 0.01. However, given that forests are non equilibrium

systems, it is unknowable how many simulation steps are required

to yield a configuration comparable to the one observed in the first

census starting from different initial conditions. For each given

pair (s, m), we generated 100 initial conditions (see above) and ran

each simulation until the predicted value of H was equal to the

empirical H (1)
e for the first census with an accuracy of 1%. This

comparison allowed deciding when to stop each simulation. We

prevented individual replacements of species having only one

individual in order to constrain the CA configuration correspond-

ing to the first census to the observed S(1)
e species. For CA

configuration stopped when the predicted H was sufficiently close

to the empirical value, we chose the pair of values of s and m such

that the coefficient of determination R2
et of the linear regression

between the observed and predicted (average over the 100

simulations) RSA distributions, was the highest provided that

R2
et$0.95.

In a second stage (Fig. 5), the pair of fitted values of s and m was

then used to estimate the other parameter, T. We restarted the

simulation at each CA configuration corresponding to the first

census now allowing species to become extinct so that the

predicted forest dynamics could describe the observed changes in S

for the remaining censuses of each forest. Proceeding in a similar

way as before, we systematically searched for the best fitting value

of T in (0.5, 5.0) in steps of DT = 0.5. For each candidate value of

T, the number of simulation steps between consecutive censuses

for a given simulation was set whenever the absolute values of

(H2H(2)
e )/H (2)

e or (S2S(2)
e )/S(2)

e became #0.01 (the first that was

satisfied). As before, the best estimate of T was the one that

predicted the highest R2
et for all censuses provided that it was

greater than 0.95.

Computation of biodiversity metrics
We estimated the average values of the metrics commonly used

to characterise the spatial distributions of tree populations and the

structure and dynamics of tree communities for the set of censuses

of each forest, and used them to compare predicted and observed

forest dynamics. These metrics were: the RSA, the species

richness, the Shannon equitability, the SAR, two indices of

population aggregation (V0R10 and F(r)) and the similarity in

community composition over time. In all the cases except the

aggregation F(r) we focused on trees with dbh$1 cm.

The RSA was calculated by counting the number of species falling

in each ranked abundance interval [4]. The SAR (average number

of species vs. plot area) curves were calculated by dividing the entire

plot into non-overlapping quadrats of square and rectangular shapes

and the number of species present in each counted [39]. We

considered quadrats of the following sizes: 565, 5610, 10610,

10620, 20625, 25625, 50625, 50650, 100650, 1006100,

2506100, 2506250 and 5006500, containing from 25 to 250000

individuals because all sites are occupied in the model The mean

number of species in quadrats of different sizes yielded the SAR.

The population aggregation index V0R10 for each species

corresponded to the density of neighbouring conspecifics on

quadrats of radius r (squares of side 2r+1 lattice spacing) relative to

the overall density [6]. The value of r is such that it corresponds to

10 m for the plot; e.g. for Barro Colorado 5006500 = 250,000

cells correspond to 500,000 m2, then the lattice spacing corre-

sponds to
ffiffiffi
2
p

m and r<7. Aggregation is indicated when

V0R10.1, and overdispersion when V0R10,1. The probability

F(r) of finding a conspecific at distance r when randomly sampling

two trees was calculated for Barro Colorado for all individuals with

dbh$10 cm in 1990 [40]. Therefore, in order to compute a

comparable aggregation index, we had to shorten the lattice from

L = 500 to L = 150 because there were 21,237 trees with

dbh$10 cm rather than 244,062 trees with dbh$1 cm .

Modelling a non-equilibrium dynamics requires specifying

when the predicted dynamics reflected in the set of computed

metrics will be compared with the actual data from the permanent

plots. Unlike other modelling approaches focusing on the temporal

evolution of states variables (e.g. species individual abundances)

that could change values on a predefined time scale, our modelling

framework focused on potential replacement events of randomly

chosen individuals per simulation step. In each simulation, the

sequence of replacement events led to different configurations of

species occupancy and to a different set of values of the

biodiversity metrics. Consequently, the predicted values of the

biodiversity metrics matched the observed values in the forest

censuses after different numbers simulation steps (and different

numbers of individual replacement events) in each of the 100

simulations. We found that the average number of simulation steps

necessary to predict values of the biodiversity metrics similar to the

observed ones was directly proportional to the total number of

trees N (the larger the number of trees, the larger the replacement

attempts needed) and to the number of species that went extinct

between consecutive censuses DS (idem), and inversely propor-

tional to the singletons S1 (which represents the species most likely

to become extinct). Overall, we found that the number of

simulation steps required to fit the data between two consecutive

censuses was approximately equal to 7.26N6DS/S1 for the six

forest plots that were censused more than once. We stress that the

number of simulation steps required to fit the data between two

consecutive censuses does not correspond to the actual replace-

ment events occurring between consecutive censuses in each forest.

One reason is that by assuming a neighbourhood for competitive

interactions smaller than the ones found for tropical trees [22,32],

the spatial propagation of the replacements occurred slowly in the

model. As a consequence, the model required a larger number of

replacement events to match the values of observed biodiversity

metrics than would have been required if we had chosen a

larger sized neighborhood. Finally, the similarity in community
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composition over time was estimated by the decay in the

coefficient of determination R2 of the log-transformed abundances

of each species between censuses provides a simple measure of

community change over time [25,26]. We calculated R2 only using

data for species whose abundance was greater than two individuals

in the first census of a forest. At a time lag of zero, no change in

community composition could yet have occurred, and thus the

auto-regression of species abundances on themselves has by

definition an R2 of unity, but as the time elapses between censuses,

changes in community composition accumulate and the value of

R2 decreases.

Supporting Information

Information S1

(DOC)

Figure 5. Sequential procedure used to estimate the model parameters for each forest illustrated with a hypothetical grid of 363
whose nodes are occupied by different species. a. In the first stage, forest dynamics starting from 100 random initial conditions (central niche
positions m(s) for the s species and spatial positions for all L individuals dynamics, both drawn from uniform distributions), dynamics consisted on the
sequence of ti (i: 1…100) individual replacements (see rules in the main text) until reaching a configuration whose standardised Shannon diversity
was similar to the one observed for the first census. We constrained the species richness to be equal to the one observed in the first census. We then
searched for the values of m and s yielding the maximum value of the coefficient of determination R2 obtained by regressing the relative species
abundance (RSA, averaged across the 100 simulations) distribution on the RSA of the first census (provided that R2$0.95). b. For the fitted values of
m and s, the second stage estimated the value of T for those forests having more than one complete census. Starting for the 100 configurations
comparable to the first census, we restarted the sequence of t9i (i: 1…100) individual replacements (now letting species to become extinct) until each
configuration had a standardised Shannon diversity or species richness (whichever came first) similar to the one observed for the second census. As in
the first step, we searched for the value of T yielding an average RSA similar to the one observed in the subsequent censuses, as judged by the R2

criterion as in step (a).
doi:10.1371/journal.pone.0082768.g005

Competition and Tropical Forest Diversity

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e82768



Author Contributions

Analyzed the data: HF PI. Contributed reagents/materials/analysis tools:

HF PI. Wrote the paper: HF PI.

References

1. Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symposia on

Quantitative Biology 22: 415–427.
2. MacArthur RH, Levins R (1967) The limiting similarity, convergence and

divergence of coexisting species. Am Nat 101: 377–385.
3. Chase J, Leibold M (2004) Ecological Niches: Linking Classical and

Contemporary Approaches. Chicago University Press, Chicago.

4. Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and
Biogeography. Princeton, NJ: Princeton University Press.

5. Rosindell J, Hubbell SP, Etienne R (2011) The Unified Neutral Theory of
Biodiversity and Biogeography at age ten. Trends Ecol Evol 26: 340–348.

6. Condit R, Ashton P, Baker P, Bunyavejchewin S, Gunatilleke S, et al. (2000)

Spatial patterns in the distribution of tropical tree species. Science 288: 1414–
1418.

7. Holyoak M, Loreau M, Strong D (1996) Neutral community ecology. Ecology
87:1368–1369.

8. Chave J (2004) Neutral theory and community ecology. Ecol Lett 7: 241–253.
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