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Summary

 

1.

 

Seed dispersal is a critical life stage of plants, yet accurate measurement of dispersal distances
has been difficult in natural systems. Genetic techniques for matching dispersed seeds to maternal
trees provide valuable data on dispersal events. Questions remain regarding how best to estimate the
population seed dispersal distance distributions from such data and how these estimates compare
with classical non-genetic estimates based on seed trap data alone.

 

2.

 

Using simulated data, we compared seed shadow estimates obtained via standard inverse
modelling of seed arrival into seed traps within mapped stands (summed seed shadow, SSS) with
estimates from four models using genetic matches: direct fitting of  the observed distribution of
distances in the genotyped sample (observed distance, OBS), direct fitting inversely weighted by
sampling intensity (OBSw), inverse modelling of numbers of seeds of each genotype in each trap
(gene shadow model, GSM), and inverse modelling of frequencies of each genotype in each trap
(competing sources model, CSM). We further explored how consideration of immigrant seed rain
from unmapped and ungenotyped trees outside the stand affected dispersal estimates, denoting
these variants SSSi, GSMi and CSMi.

 

3.

 

We applied these models to an empirical data set for the Neotropical tree 

 

Jacaranda copaia

 

, using
a hierarchical Bayesian model to incorporate variation in fecundity among trees.

 

4.

 

Fits to simulated data sets showed that OBS and SSS estimates were strongly biased, while SSSi,
GSMi and CSMi were mildly biased. Root mean square errors varied as OBS >> SSS > OBSw
> CSMi > GSMi > SSSi > CSM > GSM.

 

5.

 

Comparing results for 

 

Jacaranda

 

 under the three best models, mean posterior estimates of
dispersal distances varied as SSSi < GSM < CSM, but credible intervals overlapped among all
three models, demonstrating agreement that long-distance dispersal is common.

 

6.

 

Synthesis

 

. Here we reconcile two general approaches used to study seed dispersal distances in
natural communities. Genetic and non-genetic approaches can both provide good estimates of seed
dispersal provided that analyses of genetic data take account of any deviation from random selec-
tion of seeds for genotyping, and that SSS models consider immigrant seed rain in the analysis
whenever there is reason to think its contribution is non-zero. The use of the models presented here
should provide better estimates of population-level dispersal distance distributions in genetic and
classical seed dispersal studies.
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Introduction

 

Direct measures of seed dispersal distances and plant fecun-
dity are difficult to obtain in natural systems, especially in
closed canopy forests where seed shadows overlap (Bullock

 

et al

 

. 2006). Recently, a novel genetic technique that uses gen-
otypes of maternal tissue attached to seeds (endocarps, fruit,
or seed wings) to unequivocally match dispersed seeds to
maternal source trees has been used to measure seed dispersal
distances within large complex natural systems (Godoy &
Jordano 2001; Grivet 

 

et al

 

. 2005; Jones 

 

et al

 

. 2005; Pairon

 

et al

 

. 2006; Hansen 

 

et al

 

. 2007; Isagi 

 

et al

 

. 2007; Jordano 

 

et al

 

.
2007). Although the method is highly accurate and can be
used to measure seed movement across large spatial scales, the
technical difficulty of obtaining such estimates means that its
widespread application may be limited. The complexity of the
issues surrounding fitting seed dispersal kernels to genetic
data has only recently been appreciated (Robledo-Arnuncio
& García 2007). Finally, classical non-genetic estimates of
dispersal kernels have become common in studies of dispersal
and recruitment limitation (Ribbens 

 

et al

 

. 1994; Clark 

 

et al

 

.
1999; Muller-Landau 

 

et al

 

. this issue; Pounden 

 

et al

 

. this issue;
Schurr 

 

et al

 

. this issue). What do dispersal kernels fit with the
aid of genetic identification of seed parentage tell us that clas-
sical estimates do not? How well do these models estimate the
frequency and intensity of long-distance dispersal (LDD)
and immigration within natural populations? Knowledge of
the frequency of immigration by seed may be of particular
importance for studies concerned with the conservation of
sensitive species (Grivet 

 

et al

 

. 2005), species ability to disperse
among fragmented habitats (Hansen 

 

et al

 

. 2007), species
response to altered or absent mutualist disperser assemblages
(Wang 

 

et al

 

. 2007), and forecasting species response to climatic
change.

The nature of  genetic seed dispersal data poses several
challenges in fitting dispersal kernels. The distribution of
observed dispersal distances from source plant to seed trap in
a particular sample of genotyped seeds is not necessarily a
good estimate of the full dispersal kernel, for several reasons
(Robledo-Arnuncio & García 2007). First, genetic methods
often show that some seeds are not the offspring of any of the
genotyped mothers and are immigrants. These censored data
provide a minimum dispersal distance estimates (distance to
plot edge, for example) but actual distances remain unknown.
Second, parental multilocus genotypes may not be unique, so
that two or more possible mothers are identified for some
individuals. In both these cases, the common use of  the
minimum possible dispersal distance leads to a downward
bias in the dispersal kernel (Jones 

 

et al

 

. 2005). Third, sampling
schemes developed to specifically maximize information on
LDD or local dispersal (for example, placing seed traps with
respect to distance to source trees, or genotyping a lower pro-
portion of seeds falling near source trees) will bias the distri-
bution of genotyped seeds away from that found in a random
sample of the full population (Hardesty 

 

et al

 

. 2006). Fourth,
even if  seed traps are randomly placed with respect to source
trees and all seeds falling into the traps are genotyped and

successfully matched to a single parent, the distribution of
dispersal distances of seeds sampled from seed traps depends
on the distribution of trees with respect to those seed traps,
tree fecundities, and the dispersal kernel (Robledo-Arnuncio
& García 2007). These estimates can potentially be quite dif-
ferent (see box 2 of Nathan & Muller-Landau 2000). Uncer-
tainty in actual source trees (1&2) and systematic or random
deviations introduced by the sampling strategy (3 and 4) can
be addressed through maximum likelihood and hierarchical
Bayesian models to arrive at unbiased estimates of the distri-
bution of dispersal distances in the population.

One advantage of high-resolution genetic methods is that
they allow one to identify immigrant seeds arriving from
outside the area of mapped and genotyped trees. Standard inverse
models that estimate seed shadows from seed rain within
mapped stands (summed seed shadow, SSS method) often
assume that immigrant seed rain is zero (Ribbens 

 

et al

 

. 1994;
Clark 

 

et al

 

. 1998; Clark 

 

et al

 

. 2004). However, such an assump-
tion is not necessary; it is possible to numerically integrate
the dispersal kernel over the area outside the mapped plot to
calculate immigrant seed rain under a candidate parameter
set (SSSi method; Muller-Landau 

 

et al

 

. 2002; Dalling 

 

et al

 

.
2002; Muller-Landau 

 

et al

 

. this issue). Similarly, estimates of
dispersal kernels from genetic data can use the information on
immigrant seeds to exclude them from the analysis (Robledo
Arnuncio & García 2007), or fit the numbers of immigrant
seeds with non-immigrant seeds through integration of seed
rain expected from outside the mapped area. To date, no stud-
ies have compared models that did and did not include immi-
grant seed rain for either genetic analyses or SSS estimates.

Here, we apply models that build upon previous empirical
and theoretical work to fit dispersal kernels to dispersal dis-
tances determined from seed trap data and genotyped seeds
across scales up to 1 km. Using simulated data sets and a case
study of the Neotropical tree 

 

Jaccaranda copaia 

 

(Aubl.) D. Don,
we compare the classical model of  fitting dispersal kernels
to densities of  seeds falling within traps, the SSS model
(Ribbens 

 

et al

 

. 1994; Clark 

 

et al

 

. 1998, 2004), to several models
developed for fitting dispersal kernels to dispersal distances
determined through genetic identification.

First, we use dispersal kernel estimates that are fit directly
to observed distances (the OBS model, Jones 

 

et al

 

. 2005), and
a variant in which the OBSs are weighted inversely to sam-
pling intensity (OBSw). Next, we apply the SSS inverse mod-
elling framework to genetic data by summing expected seeds
across genotypes and traps, thereby fitting the densities of
genotypes within each trap (gene shadow model, GSM).
Finally, we fit models based upon the frequencies of individual
genotypes in each seed trap using a multinomial error dis-
tribution, the competing sources model (CSM, Robledo-
Arnuncio & García 2007). For each case, we compare models
that incorporate estimates and/or data on immigrant seed
rain with those that do not, distinguishing the immigrant-
inclusive models with the suffix ‘i’ (e.g. SSS vs. SSSi). We
quantify the bias and error of  each model as fitted to the
simulated data sets, thereby demonstrating that the OBS and
SSS models are strongly biased, and that these biases can be
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greatly reduced by appropriate weighting (OBSw) and by
incorporating immigrant seed rain (SSSi), respectively. We
further show that the best estimates are obtained by combin-
ing genetic data with inverse models through the GSM or
CSM. We then compare empirical estimates obtained by
applying the three best models (SSSi, GSM and CSM) to our
case study, and find them to be broadly congruent.

 

Methods

 

EMPIRICAL

 

 

 

DATA

 

 

 

SET

 

:

 

 

 

STUDY

 

 

 

S ITE

 

 

 

AND

 

 

 

SPECIES

 

This study took place in closed-canopy, mature, moist tropical forest
on Barro Colorado Island, Panama (Leigh 

 

et al

 

. 1996), and specifi-
cally on the 50-ha forest dynamics plot (FDP) located on the centre
of the island (Hubbell & Foster 1983). All trees > 1 cm in diameter
on this plot have been mapped, measured, and identified to species
every 5 years since 1980. For this study, we also mapped reproductive-
sized individuals of our study species within 120 m of the borders of
the plot, for a total sampled area of 91.76 ha. Since 1987, 200 seed
traps, each 0.5 m

 

2

 

 in area, located along the trails of this plot have
been censused weekly with all seeds and fruits counted and identified
to species. In 2002, because tree fall gaps were not well represented
in the original design, we placed an additional 98 traps within over
50 new tree fall gaps of varying size across the FDP. We use seed
rain into all 298 traps in 2002 and genetic data from subsamples of
seeds from the same year for the analyses here.

 

Jacaranda copaia

 

 (Bignoniaceae) is a large emergent canopy tree
(up to 45 m tall) characteristic of neotropical moist forests and ranges
from Belize to Brazil and Bolivia (Croat 1978). It is a light demanding
colonizer of large tree fall gaps (Brokaw 1985). Its small seeds (4.7 mg)
are dispersed by wind in August and September. There were 205
reproductive-sized 

 

J. copaia 

 

within the BCI FDP and an additional
99 reproductive-sized individuals within 120 m of the FDP in 2002.
Microsatellite genetic markers were developed for 

 

J. copaia

 

 in order
to study seed movement (Jones & Hubbell 2003). All adult trees and
a subset of the seeds falling into the traps were genotyped at four
microsatellite markers (Jones 

 

et al

 

. 2005; Jones & Hubbell 2006).
In particular, up to five seeds (fewer if fewer seeds arrived) were
sampled from every trap every week during the dispersal season. A
total of 445 seeds were successfully genotyped of 5165 seeds that
were captured in traps in 2002 (Fig. 1a,b). A summary of tree, trap,
seed, and genotype information is found in Table 1.

 

S IMULATED

 

 

 

DATA

 

 

 

SETS

 

To assess the bias and error of the different fitting methods against
a known standard, we simulated 100 replicate data sets with known
dispersal and fecundity parameters and seed source identities. We
used data set size and parameter values similar to those we obtained
for 

 

J. copaia

 

. Specifically, we used the true locations and sizes of

 

J. copaia

 

 trees on the plot (1240 

 

× 

 

740 m), and simulated additional
source trees in a larger area extending to 2000 m from the plot edges,
for a total area of discrete source trees encompassing 5240 

 

×

 

 4740 m.
The added trees were independently randomly placed at a density
equal to that of 

 

J. copaia

 

 trees on the plot, and their sizes were drawn
with replacement from the distribution of sizes of 

 

J. copaia

 

 trees on
the plot. We simulated seed rain from all these source trees to 300
seed traps randomly placed within the plot, assuming a fecundity of
one seed produced per cm

 

2

 

 basal area (the same for all trees), dispersal
according to a two-dimensional Student’s 

 

t

 

 distribution (Clark 

 

et al

 

. 1999)

eqn 1

with 

 

p

 

 = 100 and 

 

u

 

 = 0.5, and a negative binomial distribution of
actual seeds arriving from a given tree into a given trap around the

F r
p

u
r
u
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=

+
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⎝
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⎞

⎠
⎟

+

π 1
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1

Fig. 1. (a) Map of Jacaranda seed rain captured in seed traps on the
Forest Dynamics plot on Barro Colorado Island, Panama. Grey
squares are locations of seed traps (n = 298) that are scaled to
represent the log (seed number + 1). Dark circles are location of
reproductive sized Jacaranda copaia (n = 305). (b) Solid lines
represent the movement of seeds from trees to seed traps as measured
using genetic markers.

Table 1. Summary of study area, organisms, and genetic data used in
the empirical analysis of dispersal kernel fits. Detailed descriptions of
study sites, organisms, and methods can be found in Jones et al.
(2005)

Variable Jacaranda copaia

Extent of mapped plot (ha) 191.76
Mechanism of dispersal Wind
Total adult trees 304
Mean density ha–1 3.6
Minimum reproductive size (cm diameter) 20
Number of seed traps 298
Total seeds captured 5165
Mean number of seeds trap–1 (SD) 17.32 (46.12)
Number of seeds genotyped (% of total) 445 (8.6)
Number of microsatellite loci 4
Average alleles locus−1 11.7
Average expected heterozygosity (He) 0.81
Probability of Identity 8.13 × 10–6
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expected distribution, with dispersion parameter 

 

k

 

 = 100. The locations
of the seed traps as well as the locations and sizes of the source trees
off the plot were chosen separately for each simulation. This produced
an average of 7953 seeds arriving to seed traps in total. A maximum
of 20 randomly chosen seeds arriving to each trap were ‘genotyped’
to generate genetic data. The data sets to which the models were fit
consisted of the true source trees on the plot, the locations and num-
bers of seeds arriving into the seed traps on the plot, and/or the
genetic data on a subset of the seeds arriving into seed traps.

For the simulated parameter values, 0.5% of seeds are expected to
go beyond 2000 m, and thus to arrive from beyond 2000 m in a land-
scape of continuous source trees. We therefore not only simulated
seed rain from the discretely placed source trees extending 2000 m
beyond the plot edge, we also numerically integrated expected seed
rain from outside the area of discrete source trees.

 

GENERAL

 

 

 

MODEL

 

 

 

STRUCTURE

 

Classical inverse modelling simultaneously estimates fecundity and
dispersal parameters without the direct observation of individual
tree seed production and measurement of the distances that individual
seeds move (Ribbens 

 

et al

 

. 1994; Clark 

 

et al

 

. 1998; Clark 

 

et al

 

. 1999;
Dalling 

 

et al

 

. 2002; Clark 

 

et al

 

. 2004). These models use tree loca-
tions, tree diameters, seed trap locations, and seed trap counts to
parameterize spatially explicit models of seed dispersal. The models
estimate annual seed deposition to any location within the study
area as a function of a structural dispersal kernel scaled to the fecun-
dity of individual trees. Following Clark 

 

et al

 

. (2004), we incorporate
a hierarchical Bayesian model in our analyses to account for indi-
vidual variation in seed production (fecundity) found in forest trees.

We performed the modelling using programs run in the 

 

r

 

 operating
environment <www.cran.r-project.org>. All programs used in the
analyses are available from HCM upon request. All of the methods
we compare fitted the dispersal kernel 

 

F

 

(

 

r

 

) defined here as the
probability of a seed arriving per unit area at distance 

 

x

 

 (also known
as the two-dimensional dispersal kernel). Models also simultane-
ously estimated parameters related to fecundity and clumping of
seed deposition. We report results for fits of the two-dimensional
Student’s 

 

t

 

 distribution (Clark 

 

et al

 

. 1999) to the dispersal kernel
(eqn 1). Preliminary tests showed that this distribution fit the data
for our case study species significantly better than any of the tested
alternatives (Weibull, lognormal, Gaussian or exponential). To fit
the models, we used a reparameterization of this model in which the
fitted parameters were log transforms of the original parameters,
because fits converged better under this parameterization. We then
back-transformed these fitted parameters into the original form for
the reporting of results. To interpret the parameter values, we also
report estimated median dispersal distances, calculated from the
parameters above as 

 

√

 

(

 

u

 

2

 

1/

 

p

 

 

 

−

 

 1), and mean dispersal distances calculated
for 

 

P

 

 > 0.5 as 

 

√

 

u

 

{[

 

Γ

 

(1.5)

 

Γ

 

(

 

p

 

 

 

−

 

 0.5)]/[

 

Γ

 

(

 

p

 

 

 

+

 

 1)]} (for 

 

P

 

 < 0.5, the mean
dispersal distance is infinite). Note further that the total propor-
tion of seeds going beyond distance 

 

r

 

 can be calculated as [1 

 

+

 

 (

 

r

 

2

 

/

 

u

 

)]

 

−

 

p

 

,
which is useful for calculating the quantity of immigrant seed rain.

Models incorporating variation in fecundity among individual
trees were hierarchically structured, so that individual tree fecundity
parameters 

 

βi were fit along with hyperparameters for their mean β*
and SD σ, that is,

Qi = exp(βi)bi

βi ≈ Gaussian(μ,σ)

Here Qi is the fecundity of tree i in seeds produced per year, βi is
the fecundity parameter of tree i, and bi is the basal area of tree i (in
mm2 basal area). Under this model, seed production per unit basal
area varies lognormally among trees (because the log of the individual
seed production per unit basal area is normally distributed). In the
case of one fitting method (the CSM), we fit the SD of the fecundity
parameter without fitting the mean (see explanation in following
sections).

THE SSS: INVERSE MODELLING FROM NUMBERS OF 
SEEDS IN TRAPS

Under this model, we estimated dispersal and fecundity parameters
from the location and number of seeds in each seed trap and the basal
area and locations of adults alone ,that is, without using any genetic
information (Ribbens et al. 1994; Tufto et al. 1997; Clark et al. 1998).
The expected seed rain into a trap is calculated as the sum of con-
tributions from every conspecific adult tree on the plot, with each
contribution determined by that tree’s distance from the trap and its
basal area. Thus, the expected seed rain, sj, into a trap j, is

eqn 2

where x is the area of the trap (to convert the total from seeds per
unit area to seeds per trap). For the immigrant version of this model,
SSSi, we further considered the potential input of seeds from source
tree outside the plot, by numerically integrating over the area outside
the plot, assuming that the density of source trees there was the same
as found on the plot (Dalling et al. 2002; Muller-Landau et al. 2002;
Muller-Landau et al. 2004):

eqn 3

where a is the total mapped area, xj and yj are the coordinates of the
trap, and x and y are the coordinates of points outside the plot. Note
that the expected number of immigrant seeds varies among traps
depending on their positions xj and yj; traps nearer to the edge are
expected to receive more trees than traps farther away. The likeli-
hood of the data showing sj seeds arriving in trap j for all traps com-
bined is then

We used a negative binomial for the error distribution with a clump-
ing parameter which we denote k (Hilborn and Mangel 1997; Clark
et al. 1998).

THE OBS MODEL: F ITT ING DIRECTLY TO THE 
DISTRIBUTIONS OF DISPERSAL DISTANCES

An obvious model for estimating the dispersal kernel from genetic
data linking dispersed seeds with parent plants is to fit the dispersal
kernel directly to the distribution of observed dispersal distances in
the sampled data (Jones et al. 2005; Hardesty et al. 2006). For seeds
whose maternal genotypes match one parent tree, the distance from
the seed sampling point to the parent was the dispersal distance. For
seeds matching more than one parent tree, the minimum distance

sj i ijx Q F r  ( )= ∑
trees i

s j
i

i ij
i

i j

x Q F r
Q
a

F x x y y x y

  ( )   

(   )   (   )

= +
∑

⎡

⎣

⎢
⎢
⎢

− + −⎛
⎝

⎞
⎠

⎤
⎦
⎥

∑
trees area off plot

d d

��
2 2

j
j js∏Pr( ).| s



646 F. A. Jones & H. C. Muller-Landau

© 2008 The Authors. Journal compilation © 2008 British Ecological Society, Journal of Ecology, 96, 642–652

was used (to be conservative). For seeds that match none of the par-
ent trees (immigrants), the minimum distance to the edge of the area
beyond which adult trees were not genotyped was used as the dispersal
distance. A probability distribution was fit directly to the resulting
set of distances, a model previously used by Jones et al. (2005).

THE GSM MODEL: INVERSE MODELLING FROM THE 
NUMBERS OF EACH GENOTYPE IN TRAPS

The inverse modelling approach applied to data on total numbers of
seeds in traps can be extended to numbers of seeds of each genotype
in a sample from each trap. Let Gi be the genotype of tree i. The
expected number of seeds of genotype g to be identified among the
seeds sampled from seed trap i, sig, can then be calculated simply
by summing the expected contributions of all parent trees j having
genotype Gj = g:

eqn 4

where cj is the proportion of all seeds in trap j that are genotyped.
Note that the implicit assumption of this equation is that all seeds
with genotype g are offspring of one of the identified mothers having
the matching genotype. Thus, it is assumed that none of these seeds
could have come from non-genotyped parent trees. The total likelihood
of all the genotyped data for seeds matching known trees alone is

where sij is the observed number of seeds of genotype i in trap j. As
with the seed shadow model, we assumed a negative binomial error
distribution.

Similarly, for the immigrant version of this model, GSMi, we can
calculate the expected number of seeds whose genotype does not
match that of any parent tree on the plot, s*j, under the assumption
that all trees off the plot have non-matching genotypes, as

eqn 5

That is, we assume all the seeds coming from parents off the plot
have genotypes that match none of the parent trees on the plot. The
total likelihood of all the genotyped data is then

where s*j is the observed number of seeds in trap j whose genotype
matches none of the parents on the plot.

THE CSM: INVERSE MODELLING FROM THE RELATIVE 
FREQUENCIES OF GENOTYPES IN TRAPS

The CSM introduced by Robledo-Arnuncio & García (2007) analyses
the probabilities of observing different frequencies of genotypes in
each trap rather than absolute numbers of each genotype in each
trap. The likelihood of observed numbers of seeds of each genotype
in a trap relative to these expected frequencies is evaluated via multi-
nomial error distribution.

In the original version of this model, the observed and expected
frequencies are calculated without consideration of immigrant seed

rain. That is, seeds whose genotype does not match any source tree
in the study area are dropped from the analysis. Further, source
trees are assumed to have the same fecundity. Extending this model
to incorporate the possibility that multiple parent trees have the
same genotype as above, and allowing parents to differ in fecundity,
the expected frequency of seeds of genotype g among all genotyped
seeds matching known source trees in trap j, πgj, becomes

eqn 6

The total likelihood of the data is then

evaluated using a multinomial distribution.
To incorporate immigrant seed rain (CSMi), we first calculate the

expected proportion of immigrant seeds, as before. We then evalu-
ate the frequency of each matched genotype among all genotyped
seeds in each trap (including presumed immigrant seeds of unmatched
genotype), and the frequency of unmatched genotypes in each trap,
against the expected values using the multinomial. Specifically, the
expected frequency of the seeds of genotype g in trap j, πgj, becomes

eqn 7

The expected frequency of seeds in trap j having a genotype that
does not match any of the trees on the plot, π*j, is likewise

eqn 8

These frequencies are then evaluated with multinomial error.
For many models of fecundity, one population-level fecundity

parameter will cancel out of eqns 6, 7 and 8, thus reducing the number of
parameters estimated. For example, if fecundity is equal to a constant
times tree size as in our simulations, this constant will cancel out. For
our model of fecundity incorporating variation among individuals,
the hyperparameter β* for the mean of the individual fecundity para-
meters effectively disappears and we thus fit only the SD σ of individual
fecundity parameters.

FITT ING THE MODELS TO SIMULATED DATA

To assess error and bias of each fitting method described above,
with and without consideration of immigrant seed rain, we fitted
each of the simulated data sets using each model. The fitted model
assumed identical seed production per basal area across all source
trees, the 2Dt dispersal kernel, and negative binomial variation in
actual seed rain around expected values, in all cases as in the
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simulations. We also fitted a 2Dt kernel in which the p parameter was set
equal to 1, to test the recommendation that this is the better approach
when the true value of p is below 1. Because posterior estimates of
parameters for fits using the Gibbs sampler were essentially identical
to point estimates obtained using local optimization, because we
were interested only in the best-fit values for this exercise, and because
the local optimization methods were many times faster, we report
analyses of the results of the local optimization fits. We calculated
the median, 95% confidence interval, bias (mean deviation from the
true value), coefficient of variation, and relative root mean squared
error (RRMSE, the root mean squared error divided by the true value)
of each fitted parameter under each fitting method.

FITT ING THE MODELS TO EMPIRICAL DATA

We used hierarchical Bayesian models to fit the models to the empirical
data set (Gelman et al. 1995; Clark 2007). We used non-informative
priors for all fitted parameter estimates. We used the medians of the
posterior distributions of each parameter as our best estimate, and
report 95% credible intervals. Depending on model time to conver-
gence, we ran three independent Markov chains of at least 3000–
10 000 iterations with different starting parameters. The total number
of iterations and the burn-in period was determined separately for
each models based upon the convergence dynamics. We used Gelman
& Rubin’s (1992) and Brooks & Gelman’s (1998) potential scale
reduction factor (PSRF), which measures the ratio of variance within
and among chains, to assess model convergence. A model was assumed
to have converged if the PSRF was < 1.1. Convergence calculations
and visualizations were performed using the coda package (version
0.11–2) in the r environment.

Results

The GSM and CSM both performed well on the simulated
data sets, with insignificant bias and low relative root mean
squared errors of parameter estimates (Table 2). The SSSi,
GSMi and CSMi also performed well, but had small signifi-
cant biases in one or both dispersal parameters, and larger
errors in general. The OBSw model had only a small bias in
the second dispersal parameter, but had much larger errors
than the inverse modelling genetic estimates. The SSS and
OBS models both had very large biases and very large errors.
The SSS model in particular greatly overestimated fecundity
and showed extreme error and bias. Furthermore, the SSS
only converged 75% of the time, while the GSM converged
99% of the time and all other models converged 100% of the
time. Fitting a 1-parameter 2Dt function with the p param-
eter fixed at 1 resulted in extreme overestimation of the u
parameter (median estimates varied from 501 for the GSM to
4089 for the SSS), increases the confidence intervals on u by
factors or 3.4 (CSM) to 1581 (SSS) and none of the confi-
dence intervals overlapped the true value (100). Estimates of
the fecundity parameter under the 1-parameter fits were not
as bad as the dispersal estimates, but confidence intervals
overlapped the true value only in the case of the SSSi, and
biases, errors, and CI size were higher for all methods except
SSS (data not shown).

The SSSi, GSM and CSM estimates of dispersal parame-
ters for Jacaranda did not differ significantly, as their 95% T
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credible intervals all overlapped (Table 3). The resulting best
point estimates suggest differing pictures of dispersal potential
in this species. The SSSi model produced the lowest dispersal
distance estimates (median = 15.3, mean = 28.2 m), followed
by the GSM (17.9, 62.8), and CSM (26.8, 339.5) (Fig. 2). The
population-level fecundity parameter estimates also have
overlapping credible intervals and are broadly congruent,
though the best estimates of the population mean (μ) log
fecundity parameter vary as SSSi > GSM, and those of the
population SD (σ) log fecundity parameter vary as SSSi >
GSM > CSM.

Discussion

COMPARING THE ACCURACY AND PRECIS ION OF THE 
DIFFERENT F ITT ING MODELS

Estimates from simulated data sets clearly demonstrated the
substantial biases troubling naïve analyses of both genetic
and non-genetic data, and showed how these can be overcome.

Estimation of the population dispersal distance distribution
directly from the distribution of  dispersal distances in a
genotyped sample (OBS) leads to overestimation of dispersal
distances when sampling is biased against areas with high
densities of seeds. Weighting each data point inversely with
the sampling effort in its source area (e.g. the proportion of
seeds genotyped in a randomly placed seed trap) (OBSw)
provides a simple correction for this bias, albeit the resulting
estimates are still subject to considerable error depending on
the locations of seed traps relative to reproductive trees.

Application of inverse modelling to seed trap data without
consideration of immigrant seed rain also leads to overesti-
mation of dispersal distances and fecundities whenever the
data include immigrant seeds arriving from outside the study
area. Including immigrant seed rain adds a mass conservation
constraint that explicitly considers seeds that are dispersed
long distances in the calculations. If  the fitted seed shadow
suggests significant numbers of seeds produced on the plot
are dispersed off  the plot, then conversely it shows that
significant numbers of the seeds arriving on the plot are pro-
duced off  the plot for plots in continuous forests.

Failure to consider immigrant seed rain leads to two inter-
related problems. First, immigrant seeds are misattributed to
trees on the plot, and thus the expected seed rain from on-plot
trees must be increased (through, for example, increases in
fecundity estimates) to fit the data under the assumption of no
immigrant seed rain. Second, and more importantly, seed rain
to distances that fall outside of  the plot is unconstrained.
Dispersal parameter estimates that suggest a large percentage
of seeds that are going off  the plot are evaluated only given
what they predict for seed rain on the plot. Imagine, in a
worst-case scenario, dispersal parameters that are fit when
immigrant seed rain is ignored might predict 90% of seeds
produced on the plot are dispersed off the plot, yet the analysis
assumes that 0% of the seeds are immigrants. This leads to
over-estimation of fecundity parameters (Clark et al. 1998)
and to over-estimation of the proportion of seeds going long
distances whenever there are trees outside the plot that are the
sources of immigrant seeds. As we show in our simulations,
including estimates of immigrant seed rain in the expected
seed rain calculations (SSSi) greatly reduces the biases for the
fecundity and dispersal scale parameters and reduces error.

Table 3. Mean and 95% upper and lower credible intervals of model parameter estimates for seed dispersal in Jacaranda copaia

Distance

Fecundity Fecundity Dispersal Dispersal

μ σ u P

Fittype Median Mean Mean CI Mean CI Mean CI Mean CI

SSSi 15.3 28.2 −3.180 (−2.501, −5.469) 2.745 (1.879, 4.434) 89.175 (26.746, 243.325) 0.712 (0.571, 1.124)
GSM 17.9 62.8 −2.907 (−2.875, −3.009) 2.000 (1.652, 2.405) 98.613 (28.276, 238.507) 0.588 (0.452, 0.759)
CSM 26.8 339.5 NA NA 1.618 (1.505, 1.738) 190.3 (82.599, 403.792) 0.521 (0.367, 0.722)

SSSi refers to the summed seed shadow model with immigration, GSM is the gene shadow model, and CSM is the competing sources model. 
Median and mean are dispersal distances, respectively. Fecundity estimates are mean (μ) of log seed production per unit basal area (mm2) and 
SD (σ), dispersal parameter estimates, u and p are the distance and shape parameters for Clark 2Dt dispersal kernel, respectively (see text).

Fig. 2. Dispersal kernel estimates for the summed seed shadow
model with immigration (SSSi), the gene shadow model (GSM), and
competing sources model (CSM) fit to seed dispersal data from
Jacaranda copaia.
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Unexpectedly, the simulations also revealed that incorpo-
rating immigrant seed rain led to increased error for the genetic
inverse modelling estimates (GSMi vs. GSM, CSMi vs. CSM).
Given that genetic data allows for the identification of immigrant
seeds, dispersal kernels can be better estimated when these
seeds are excluded from analysis, assuming remaining seeds
are correctly assigned to parents on the plot. Including immi-
grant seeds in the GSMi and CSMi adds more uncertainty,
because dispersal distance estimates of expected total immi-
grant seed rain are less precise than estimates of expected seed
rain from a particular parent tree. Excluding immigrant seeds also
eliminates potential bias towards longer dispersal distances aris-
ing from genotyping errors that misidentify seeds as immigrants.

Also unexpectedly, all inverse modelling methods that
incorporate immigrant seed rain (SSSi, GSMi and CSMi)
have some small bias in the dispersal shape estimates, and in
other parameters as well. These biases did not appear in
simulations in which the seed sources outside the study area
were numerous and evenly distributed across the landscape,
suggesting that the biases are related to the additional unex-
plained variation in seed rain due to the unknown locations
(and fecundities) of source trees outside the study area
(results not shown). Clearly, it is always better to have more
information on the locations and fecundities of  as large a
proportion of  trees contributing seeds to the seed traps as
possible. In the absence of such information, the better course
for inverse modelling with genetic data is to drop immigrant
seeds from the analyses (GSM and CSM), and the better
course when using seed trap data alone is to account for them
(SSSi).

Our simulation results also provided information on the
relative precision of  the different methods, as reflected in
the confidence intervals and coefficients of variation of the
estimates. These results should not be interpreted in terms of
absolute precision when applied to any data set, because the
precision depends on the size of the data set, the appropriateness
of the fitted model, and the noisiness of the data (represented
in the simulations by the negative binomial dispersion parameter).
Indeed, the relative precision of the genetic and non-genetic
estimates depends specifically on the proportion of  seeds
genotyped, and thus the relative size of the two data sets. Our
simulation results are particularly relevant to the case study
species we analyse, as the data sets are similar in size and
dispersal scale. For data sets of these sizes, methods based on
inverse modelling of genetic data have the highest precision
(lowest CVs) when both dispersal parameters were examined
together, with the GSM and GSMi slightly better than the
CSM and CSMi for these simulated data sets. When we fit
models to data sets lacking information on variation in fecundity
among individuals, however, the CSM and CSMi had higher
precision than the GSM and GSMi, indicating that the CSM
is more robust to a poor fecundity model (results not shown),
a strength also highlighted by Robledo-Arnuncio & García
(2007). Across all models, precision of the dispersal shape
parameter estimates was higher than that of the dispersal scale
parameter estimates. GSM and GSMi estimates of fecundity
were very precise, while SSSi estimates of fecundity were not.

For our simulations, the root mean squared error, which
reflects both bias and error (both accuracy and precision),
was lowest for the GSM and CSM models, and next best for
the SSSi, GSMi, CSMi and OBSw models, and poor for the
strongly biased OBS and SSS models. Again, these results
should not be interpreted too broadly, as the rankings will
vary with the data set.

INSIGHT GAINED INTO SEED DISPERSAL AND 
PRODUCTION IN  JACARANDA

When applied to our empirical data for Jacaranda, all the
models agree that long-distance dispersal is frequent in this
species. Best estimates of the fraction of seeds going beyond
100 (1000) m vary from 3.5% (0.13%) for the SSSi to 6.5%
(0.43%) for the GSM to 12.6% (1.2%) for the CSM. Consider-
ing that a mature reproductive Jacaranda tree produces on
the order of 100 000 seeds per year, a typical tree is expected
to send hundreds if  not thousands of seeds beyond 1 km every
year.

The dispersal parameter estimates we obtained here through
intensive analyses of genetic and non-genetic data combined
differ from previous estimates we obtained from these data
sets using different models. Previous estimates from the genetic
data set using OBS suggested larger dispersal distances,
consistent with the upward bias expected under this model
given the seed sampling strategy (Jones et al. 2005). Estimates
from fitting the 2Dt with the p parameter set to a larger seed
trap data set using SSS suggested a lower frequency of seeds
going long distances, consistent with the bias expected given
the thinner-tailed kernel being fitted (Muller-Landau et al.
this issue). The fits presented here are free of both these biases,
and should be a more accurate and precise reflection of
Jacaranda’s seed dispersal.

Overall, the differences between the SSSi, GSM, and CSM
dispersal parameter estimates for Jacaranda, which are larger
than those observed in the fits to simulated data sets, suggest
that the fitted two-parameter dispersal kernel still may not
fully capture the complex shape of the true dispersal kernel.
Because inverse modelling estimates based on genetic data
should provide better information about dispersal at distances
beyond the maximum nearest tree–trap-distances, here 106 m,
we expect the GSM and CSM estimates to be a better basis for
drawing conclusions about long-distance dispersal in particular.

In addition to our genetic estimates, several lines of evid-
ence suggest that the potential for LDD in J. copaia is high.
The maximum average wind speed during the period when
seeds are dispersed in J. copaia (August-December) is half  the
maximum average wind speed of the period when all other
wind-dispersed tree seeds on the FDP are released (February–
May (Paton 2007). Nevertheless, J. copaia is one of the most
effective dispersers on the FDP. It is one of only two species on
the FDP that has successfully dispersed seeds to each of the
200 seed traps over a 15-year period (S. J. Wright, personal
communication). This suggests that other mechanisms besides
maximum wind speed, such as the vertical movement of seeds
in updraft thermals, may play an important role in determining
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dispersal distances. Hundreds of seeds were observed rising
vertically in conditions of relatively little horizontal wind to
heights > 25 m above the canopy before moving horizontally
(F. A. Jones, personal observation). Moreover, J. copaia is one
of the most common seeds caught in a network of vertical
seed traps placed above the canopy (35 m) at several sites
around BCI (R. Nathan et al., unpublished data). If  uplifting
events are common, these could create complex dispersal
kernels with separate distributions describing dispersal far
from the plant that would not necessarily be well described by
dispersal kernels with monotonic decline in seed number
within increasing distance (Nathan et al. 2002).

Fitted models agree with empirical data in indicating con-
siderable variation in seed production per basal area among
trees. Based upon capsule counts of 188 individual Jacaranda
individuals in this population, we estimated that the aver-
age seed numbers produced per basal area was 0.56 with a
SD = 1.12. These estimates overlap with those obtained
under the SSSi and GSM models; both population-level and
individual tree estimates are in greater agreement with the
GSM results (data not shown).

EVALUATING GENETIC AND NON-GENETIC 
ESTIMATION OF DISPERSAL

Genetic methods for collecting data on seed dispersal patterns
often require significant investment of time and resources,
which makes their widespread application limited. However,
our results show that they can be useful for estimating dispersal
distances in natural populations and can offer more precise
estimates of fecundity and dispersal than non-genetic methods.
Genetic models will provide the greatest additional informa-
tion in cases in which there is extensive overlap in seed shadows,
which reduces the precision of non-genetic analyses. An addi-
tional major advantage of high-resolution genetic data is that
it makes it possible to accurately estimate rates of immigra-
tion. Identification of seeds arriving from outside the study
area has revealed that long-distance dispersal is more fre-
quent in some populations than previously recognized or
estimated based upon local dispersal kernels. Finally, they
can provide deeper insight on the mechanisms responsible for
long-distance movement (Pairon et al. 2006; Jordano et al. 2007).

Our simulation results show that non-genetic seed shadow
estimates are relatively unbiased if  immigrant seed rain is
explicitly considered in the model (SSSi rather than SSS), and
the fitted model is a sufficiently good representation of the
true dispersal kernel. However, failure to include seed immi-
gration can result in greatly overestimated fecundity and
dispersal. Clearly, the degree of such overestimation will depend
on the number of immigrant seeds in the data set, which itself
depends on the scale of seed dispersal relative to the scale of
the study area and the density of source trees outside the study
area. As demonstrated by Clark et al. (1998), excluding potential
source trees at the edge of the study area has little effect on
estimates for species with very short dispersal distances, but
substantial effect for species with longer dispersal distances.

Of the techniques employed here, the SSS and SSSi are by

far the more common and can be expected to remain so in the
foreseeable future. Because data for multiple species can
easily be collected at the same time, relevant analytical tools
are well developed and widely used, and many studies have
already been completed, application of these model allows for
systematic comparisons within and among plant communities
across multiple years (Clark et al. 2004; Muller-Landau et al.
this issue). Furthermore, if  one is interested mainly in predict-
ing expected seed rain within the study area and quantifying
associated seed limitation rather than inferring dispersal dis-
tances from fitted models, the SSS and SSSi models, which
effectively fit spatial variation in seed densities in the study
area, provide the most direct approach. The SSSi model also
provides an unbiased estimate of  dispersal distances, and
we strongly recommend that this model supercede the non-
immigrant SSS model in all such analyses. However, even
with the SSSi model, care must be taken in extrapolating
results of locally derived models to larger distances.

The wide credible intervals on dispersal parameter esti-
mates for Jacaranda under all the models used here provides a
reminder of the difficulty of obtaining precise information on
seed dispersal. Our seed trap and genotype data sets for this
species are among the largest such data sets yet for any species:
the area mapped for adult trees is nearly 100 ha, 300 seed
traps captured over 5000 seeds with large variation in seed
arrival among traps, and over 400 seeds were genotyped.
Further, because Jacaranda is wind-dispersed, we expect its
dispersal kernel to be more regular than those of the animal-
dispersed species for which seed rain is much more patchy
(Muller-Landau & Hardesty 2005; Russo et al. 2006). Yet
without prior knowledge of  the shape or scale parameters
of  the dispersal kernel, or any of  the fecundity parameters,
the posterior credible intervals on the parameters generally
encompassed a factor of  two or more. Estimates of  long-
distance dispersal frequency and mean dispersal distances
from studies for which data sets are more limited, adult trees
are more abundant, plots are smaller in scale, and/or fitted
models provide an even rougher caricature of the true process
are likely to suffer even greater errors. It is always possible to
achieve narrower confidence intervals on fitted parameters by
constraining one or more of  the parameters, or fitting a
simpler model – but at this time we lack a good basis for
applying such a constraint, and inappropriate choice of  a
simplified model would lead to biased estimates (Muller-
Landau et al. this volume).

CONCLUSIONS AND FUTURE DIRECTIONS

The integration of multiple types of data and analyses using
hierarchical Bayesian models offers the best hope for further
progress in understanding seed dispersal, especially long-
distance dispersal (Clark 2005). This should involve not only
seed trapping and genetic matching – preferably with a higher
frequency of seeds genotyped in traps far from adults – but
also the use of information on dispersal processes to constrain
the shape of the dispersal kernel, and data on seed production
of individual trees to constrain the fecundity model. For example,
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in wind-dispersed species, data on tree heights combined with
mechanistic models for how height affects dispersal distances
could be incorporated into the fitted dispersal kernels along
with information on wind speed and direction and spatial
heterogeneity (Katul et al. 2005; Bohrer et al. this issue).

In order to deal with the problem of censored data in the
tail due to the unknown origin of immigrant seeds, represent-
ative genetic sampling of populations distributed across a
landscape of interest and the use of assignment techniques
based upon more traditional measures of population genetic
structure could be used to determine the most-likely source
population of immigrant seeds (see review in Manel et al. 2005).
Knowledge of the source of immigrant seeds would lessen the
uncertainty of  immigrant dispersal distances and allow for
its integration into the tail (Clark et al. 2003). In the case of
Jacaranda, genotypic information from populations across
BCI could be used in combination with the assignment tests
and the CSM to provide estimates of the likely sources of
immigrants and provide greater resolution with regards to the
source of seeds moving off  plot.

Future studies should explore how to integrate missing or
incomplete genotypic data into the framework presented
here. Such missing data is common in the maternal tissue
approach due to the degraded nature of DNA in maternal
seed tissue (F. A. Jones, unpublished data). Finally, we encourage
studies that integrate genetic analyses on seed movement
distances with genetic analyses on seedling recruitment
distances (Hardesty et al. 2006). Collectively, a combination
of modelling, population genetic, and field techniques could
shed a great deal of insight into the demographic role of LDD
events within populations and its contribution to the origin
and maintenance of biological diversity.
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