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SHORT COMMUNICATION

The understorey palm Licuala (Arecaceae) suppresses tree regeneration in
a lowland forest in Asia
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The establishment and growth of a young tree re-
quires a microsite that falls within a range of specific
environmental conditions. Microsites will to some degree
be modified by such neighbouring plants as are already
established, a circumstance that will in turn lead to
either a positive or negative spatial association among
the individuals. Such patterns of spatial interactions are
amenable to statistical inference. Positive associations
may result when one species ameliorates overall hostile
conditions, such as the shade and moisture provided
the seedlings of long-leaf pine by the canopy of the
saw palmetto (Allen 1956). Indeed, positive associations
appear widespread in arid and cold habitats (reviewed in
Tirado & Pugnaire 2003). However, on the forest floor of
the humid tropics, negative associations are presumably
more likely (Montgomery 2004). Harms et al. (2004)
recently found a correlation between high density of
small palms and a low density of tree saplings across
four Neotropical sites, while Wang & Augspurger (2004)
demonstrated that dwarf palms and cyclanths reduce
seedling recruitment on the forest floor in Costa Rica.

We investigated the spatial co-occurrence of under-
storey palms in the genus Licuala (Arecaceae) with the
saplings of trees recruited into a permanent plot of lowland
tropical forest in Malaysia. Licuala is a genus of 110
species of long-lived, short-stemmed or caespitose palms
indigenous to South-East Asia and the Western Pacific
where they create a characteristic appearance within
forest understorey (Saw 1994). They bear fan-shaped
leaves with blades 1–2 m across and typically incised in
wedge-shaped portions. The petioles range up to 3 m long
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creating a dome-like canopy of foliage. Individual leaves
can twist to optimize the intercept of light (Takenaka et al.
2001) and thereby augment the shade within the already
shaded forest interior.

Between 1986 and 1989, all trees greater than 1 cm
dbh were mapped, measured and identified in a 50-ha
permanent research plot in lowland forest in Peninsular
Malaysia (Kochummen et al. 1990, Manokaran &
LaFrankie 1990, Manokaran et al. 1990). Trees that grew
into the 1 cm dbh class after 1985 were enumerated in
1990, 1995 and 2000 and were labelled as recruits. They
numbered 54365 and represented 739 species.

Between 1990 and 1993, over 17,226 palms re-
presenting three species of the genus Licuala were
likewise mapped, identified and the leaves counted and
measured (Saw 1994). Individuals of Licuala with mean
petiole length over 2 m – i.e. large plants – numbered
8884 in the plot and included the two species Licuala
ferruginea Becc. and Licuala longipes Griff. ex Mart.

Tabulations were made with SAS version 8.1. Point
patterns were analysed using Ripley’s K function (Dale
1999, Haase 1995, Plotkin et al. 2002, Ripley 1976)
calculated with SPPA v 2.0 (Spatial Point Pattern
Analysis. Version 2.0). The weighting approach, used to
correct for edge effects (Getis & Franklin 1987 modified
by Haase 1995) yields unbiased results for distances up to
half of the shortest side of the plot. The null hypothesis of
no spatial interaction was tested by randomly assigning
locations to recruits while holding position of Licuala
stationary. The distance t was evaluated from zero to 20 m
at 1-m increments with 1000 randomizations providing
a 99% confidence interval.

The two species of Licuala were spatially segregated
according to topography (presumably in response to soil
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Figure 1. Location of 8884 Licuala ferruginea and L. longipes with mean petiole length ≥2 m in a 50-ha permanent plot in Pasoh Forest Malaysia
(a); location of 54365 tree saplings ≥1 cm dbh in that same plot (b).

moisture) and possibly with respect to soils (Saw 1994),
while the combined species map showed low density in the
south-west corner of the plot (Figure 1a) possibly due to
the sandy well-drained soils that predominate there. Tree
recruits were generally more abundant in the western half
of the plot where the canopy was more broken (Figure 1a).

The correlation between number of recruits and number
of large palms was negative but with great scatter (r2 =
0.132) at the 1-ha scale (Figure 2). Those hectares that
had very high numbers of recruits varied widely in the
number of Licuala whereas hectares with fewer than 800
recruits all had more than 100 individuals of Licuala.
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Figure 2. The number of trees newly recruited to the 1 cm dbh class
between 1985–2000 fifty 1-ha squares vs. the number of individuals of
Licuala (mean petiole length ≥2 m) in each ha.
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Figure 3. Second-order spatial analysis of the distribution pattern of
Licuala spp. and tree recruits 1990–2000. The plot of the derived
statistic of Ripley’s K function vs, t shows negative association from
neighbourhood distance t of 0–3 m and no increase thereafter. Dotted
lines give 99% confidence intervals for complete spatial randomness
from 1000 randomizations.

Using the central 9-ha square where both Licuala and
recruits were abundant, we found a sharp and highly
significant negative association from 0–2 m and a lesser
reduction from 2–3 m (Figure 3). Beyond a distance of 3 m,
no further influence of Licuala was seen.

The consequent pattern of the negative association is
seen in the relative abundance of saplings within 3 m of
Licuala. Within the 9-ha square, we found that locations
within 3 m of a large Licuala represented 40.9% of the total
area, but included only 10.2% of the recruits (2 × 2 table,
df = 1, χ2 > 4000, P < 0.0001). We compared the
species composition of the two classes, i.e. recruits within

3 m of a Licuala and recruits beyond 3 m and found no
significant difference in either diversity (Fisher’s alpha) or
identity of the ten most abundant species. Neither were
there significant differences in growth or mortality.

Shading is the most naturally suspected mechanism
of suppressing sapling regeneration. Farris-Lopez et al.
(2004) found that light availability beneath a midstorey
palm was 27% lower than readings beyond the canopy,
and that seedling numbers beneath the canopy were
reduced 33% from background numbers. However, they
also found that leaf litter was five times thicker below the
canopy. Palms may also serve to make the local sites drier,
or remove nutrients, although trenching experiments on
seedlings near palms and cyclanths were not significant
(Denslow et al. 1991).

The results provide a Palaeotropical complement to the
recent evidence that the abundant understorey palms of
the Neotropics can obstruct regeneration of trees (Farris-
Lopez et al. 2004, Harms et al. 2004, Wang & Augspurger
2004), while they add to the list of factors known to
create microsite heterogeneity on the forest floor. These
factors now include: tree fall gaps and associated light
(Dalling & Hubbell 2002, Dalling et al. 1998, Davies
et al. 1998, Montgomery 2004, Turner 2001); leaf litter
(Benı́tez-Malvido & Kossmann-Ferraz 1999) and larger
debris from storms (Walker et al. 2003); the micro-biota
that putatively direct strong local density dependence
(Wills & Condit 1999); and larger biota that change the
local composition of understorey treelets (Ickes et al. 2001,
2003; Levey & Byrne 1993).

While the results here confirm for the Paleotropics that
understorey palms can suppress tree saplings immediately
beneath their canopy, it does not necessarily follow
that the removal of palms will boost regeneration. Only
experimental trials can ascertain the balance between
increased space and light provided by removal of palms
against the desiccation that might be expected to follow,
as well as unanticipated ecological consequences.
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