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Abstract.   Forging strong links between traits and performance is essential for under-
standing and predicting community assembly and dynamics. Functional trait analyses of 
trees that have correlated single-trait values with measures of performance such as growth 
and mortality have generally found weak relationships. A reason for these weak relation-
ships is the failure to use individual-level trait data while simultaneously putting that data 
into the context of the abiotic setting, neighborhood composition, and the remaining axes 
constituting the overall phenotype. Here, utilizing detailed growth and trait data for 59 
species of trees in a subtropical forest, we demonstrate that the individual-level functional 
trait values are strongly related to individual growth rates, and that the strength of these 
relationships critically depends on the context of that individual. We argue that our 
understanding of trait–performance relationships can be greatly improved with individual-
level data so long as that data is put into the proper context.
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Introduction

The assembly and dynamics of ecological communi-
ties is ultimately governed by demographic performance 
(Rees et al. 2001, Silvertown 2004). A key goal in com-
munity ecology is, therefore, to quantify the intrinsic 
and extrinsic factors that best predict individual perfor-
mance. Identifying the relative influence of the abiotic 
and biotic environment and the aspects of organismal 
form and function that are related to such interactions 
is necessary for a predictive and mechanistic understand-
ing of how individual performance scales up to produce 
the emergent patterns of community assembly and 
dynamics (e.g., Massey et al. 2006, Enquist et al. 2007, 
Martinez-Vilalta et  al. 2010, Bai et  al. 2012, Swenson 
2013, Iida et al. 2014a, b).

Despite the importance of linking organismal traits 
to the abiotic and biotic environment and individual-
level demographic performance, most trait-based anal-
yses of tree demography have uncovered relatively weak 
statistical relationships (Poorter et  al. 2008, Herault 
et al. 2011, Sterck et al. 2012). We propose four reasons 
why these relationships are not as strong as originally 
expected. First, trait–demography relationships must be 

placed into the context of the present abiotic and biotic 
environment. Specifically, the performance of an indi-
vidual given its trait values can only be predicted with 
information regarding the identity of the neighboring 
individuals with which it interacts and the abiotic envi-
ronment (e.g., Milla et  al. 2009, Auger and Shipley 
2013). Further, it is well known that soil nutrient and 
water content can greatly influence individual tree 
growth (e.g., Vitousek et  al. 1993, Baker et  al. 2003, 
Paoli and Curran 2007), but this information is 
frequently not considered in functional-trait-tree demo
graphy research. Second, in seasonal environments, the 
factors that most affect demography are likely to change 
with the seasons and such detail is often not considered. 
Third, often only univariate trait–demography relation-
ships have been explored, but it is more likely that the 
entire multivariate phenotype and not only a single trait 
determine individual performance (e.g., Marks and 
Lechowicz 2006, Enquist et  al. 2007, Swenson 2012, 
2013). Last, trait–demography statistical relationships 
are often quantified at the species level using mean 
demographic rates and mean trait values, but individuals 
within species may vary substantially in their traits and 
performance, due to genetic and environmental differ-
ences, suggesting that trait–demography relationships 
will be strongest when analyzing data on the individual 
and not the species level (von Oheimb et al. 2011, Auger 
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and Shipley 2013, Iida et al. 2014a, b). Individual-based 
studies are therefore needed to understand how func-
tional traits and the abiotic and biotic environment 
simultaneously govern demographic performance.

Critical to plant trait–demography research is that the 
traits being integrated should be those closely related 
with the ability to acquire limiting resources, thereby 
dictating competition, growth, or tolerance to abiotic 
and biotic interactions. This includes traits related to 
structure, wood economics, and leaf economics and 
where species land on a fast (i.e., acquisitive) to slow 
(conservative) strategy spectrum (e.g., Wright et al. 2004, 
Enquist et al. 2007, Chave et al. 2009). Typically, ecol-
ogists have used easily measured traits for these pur-
poses, but it is likely that allocation and relatively “hard” 
traits, such as crown dimensions and hydraulics, are 
more strongly linked with performance and better reflect 
where species fall along an acquisitive to conservative 
strategy (Chave et al. 2009, Russo et al. 2010, Westbrook 
et  al. 2011, Fan et  al. 2012). For example, trees with 
large crown diameters are expected to have faster growth 
rates as height and crown size are closely related with 
canopy light interception and overall allocation to 
resource capture (Poorter et al. 2005, King et al. 2006). 
Additionally, individuals with higher hydraulic conduc-
tivity generally have lower wood density and have faster 
volumetric growth rates (Fan et  al. 2012, Iida et  al. 
2014a, b). In other words, allocation and hard trait data 
may be extremely valuable and informative for trait–
demography research, but there is a tremendous risk in 
losing this value when aggregating the data up to the 
species level. More research is needed that measures 
those aspects of plant form and function that are more 
mechanistically linked to individual performance and 
more information is needed regarding whether individual-
level analyses are indeed more informative than analyses 
using aggregated species-level data.

Large (i.e., >1  ha) long-term forest dynamics plots 
with regular inventories of tree growth provide the essen-
tial infrastructure necessary to link the demographic 
performance of individuals to their abiotic and biotic 
environment and traits in a robust manner. Here we use 
a long-term forest dynamics plot in subtropical China 
to explore the causal relationships between functional 
traits, abiotic environment, and neighborhood compo-
sition of individual trees on the explanatory side and 
the growth of these individuals as the dependent variable 
for 59 woody species. We predict that (1) functional 
traits measured at individual level are directly related to 
tree growth; (2) the functional trait values of individuals 
are the result of intrinsic and extrinsic factors linked to 
abiotic and biotic environments, making these environ-
mental variables indirectly linked to growth via the traits 
measured; (3) the importance of trait, abiotic, and biotic 
factors to tree growth is sensitive to intra- and inter-
annual variation in climate and the relative strength of 
these interactions will not be consistent across seasons 
or years; (4) abiotic variables should be directly related 

to neighborhood composition, which itself influences the 
trait values of individuals; and (5) traits measured on 
the individual level will explain more of the variation in 
individual growth rates than mean trait values calculated 
from the aggregation of individual-level data (i.e., 
species-level mean trait data). Here we present, to our 
knowledge, the first study to address these predictions 
by measuring traits, the environment, and growth at the 
individual level in a natural forest stand.

Methods

Study site

The study was conducted in the 24-ha Gutianshan 
forest dynamics plot (GTS FDP) in evergreen, broad-
leaved, old-growth, subtropical forest at the Gutianshan 
Nature Reserve, Kaihua, China (29°15′  N, 118°07′  E). 
The GTS FDP is a part of the Chinese Forest Biodiversity 
Monitoring Network and the Smithsonian’s Center for 
Tropical Forest Science Network. All free-standing 
woody trees with a diameter at breast height (DBH) 
≥1  cm were mapped, tagged, and identified to species 
(Legendre et  al. 2009). In the present study, we used 
data from the 2005 and 2010 censuses. GTS FDP has 
distinct seasons with a relatively warm and wet season 
from April to September and a cold and dry season from 
October to March. The average annual rainfall is 
1964  mm and the mean annual temperature is 15.3°C 
(Yu et al. 2011). The plot is topographically rugged with 
altitude ranging from 446 to 715 m.

Target trees and growth rates

To quantify tree growth on finer temporal scales, we 
installed dendrometer bands on over 1,300 individual 
trees within the GTS FDP representing 80 species. The 
dendrometers allowed us to quantify variation in growth 
on shorter time scales than is typical for other studies 
of tree growth in large forest dynamics plots (Yan et al. 
2006, O’Brien et al. 2008). The trees with dendrometer 
bands were sampled according to a standard protocol 
where 50 randomly selected quadrats were selected 
across the 24-ha GTS FDP, each being 40  ×  40  m in 
area with a central nesting of subplots 15  ×  15  m, 
12  ×  12  m and 8  ×  8  m in size (Muller-Landau and 
Dong 2008). Quadrats and sub-quadrats of different 
sizes were used for sampling trees with DBH 40–50, 
20–40, 10–20, and 5–10 cm, respectively, on which den-
drometers were placed. Additionally, trees with a DBH 
> 50 cm were randomly selected from all over the 24-ha 
plot. Trees that died during the study period, trees with 
damaged dendrometer bands, species with a single indi-
vidual in the data set, and species with incomplete trait 
or growth data at the individual level were eliminated 
from the analyses. This resulted in a reduced data set 
containing 822 individual trees belonging to 59 species. 
DBH values ranged from 3.1  cm to 87.4  cm in this 
reduced data set (Fig. 1 and Appendix S1: Table S1).
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Each tree with a dendrometer was visited twice per 
year, in March and September, and the growth increment 
was measured using a digital caliper. These circumfer-
ence increments were transformed into diameter incre-
ments divided by the time interval to produce an annual 
tree growth rate, assuming linear growth over the time 
interval (AGR; mm/yr). All of the dendrometers were 
installed in September 2009. The measurements used in 
this study were obtained in the time period between 
September 2010 and September 2013. This included 
seven measurements or six time intervals per tree. 
However, the first measurement was excluded because 
the spring keeping the dendrometer band tight had 
slipped in some trees and needed time to settle, making 
initial measurements unreliable. According to the tem-
perature of the region, we defined April to September 
as the warm season and October to March as the cold 
season. We calculated growth rate as the average annual 
growth rate summarized across seasons (mm/yr, AGR-2), 
the average annual growth rate just during the warm 
season (mm/yr, AGR-W) and the average annual growth 
rate just during the cold season (mm/yr, AGR-C; 
Appendix S1: Fig. S1). We also wanted to compare these 
dendrometer growth data to the growth data taken dur-
ing the normal 5-yr interval censuses (i.e., the growth 
from 2005 to 2010 for the same individuals). Thus, we 
calculated the average annual growth rate for all 822 
individuals (mm/yr, AGR-5) and included these meas-
urements in our analysis (Appendix S1: Fig. S1). For 
biological and statistical reasons (see Stoll et  al. 1994), 
we analyzed absolute rather than relative growth rates.

Tree functional traits

We measured functional trait values for each of the 
822 trees in our reduced data set. These data were used 

for all of our individual-level analyses. For each of the 
822 target trees, we measured two architectural traits, 
height and crown diameter (CD); two stem traits, wood 
density (WD) and xylem-specific hydraulic conductivity 
(Ks); and five leaf traits, leaf area (LA), specific leaf area 
(SLA), stomatal density (SD), leaf nitrogen content 
(LN), and leaf phosphorus content (LP). These func-
tional traits are thought to be leading indicators of plant 
functional strategies and are expected to be linked to 
individual tree performance (e.g., Westoby et  al. 2002, 
Wright et al. 2004, 2010, Poorter et al. 2008, Chave et al. 
2009). Height and CD were measured using an altimeter 
pole together with a laser telemeter (Nikon Laser 
rangefinder 550, Tokyo, Japan) and a compass (Harbin 
Compass DQL-9, Harbin, China). Individual WD was 
quantified using the density of the nearest branch 
attached to the main trunk. Previous work has shown 
this to be a strong predictor of the main stem WD 
(Swenson and Enquist 2008). Thus, measuring branch 
WD allowed researchers to estimate individual WD with-
out having to conduct potentially very destructive meas-
urements such as coring the main stem or radially 
sectioning a stem (Swenson and Enquist 2008). The 
branch WD was calculated as oven-dried mass (80°C, 
48 h) divided by water-displaced volume of three to five 
segments cutting from three separate branches for each 
tree. The Ks of each tree was calculated as the maximum 
rate of water flow through a branch segment per xylem 
cross-sectional area. The water flow rate was measured 
by a set of self-made equipment amenable to working in 
a field laboratory. We used three to five uniform, straight, 
healthy, and sun-exposed branches with diameters 
~0.45 mm and with lengths ~15  cm for each individual 
tree (Sperry et al. 1988, Ding et al. 2011). The LA and 
SLA measurements followed the same methodologies as 
used in Liu et al. (2012) where 5–10 fresh, healthy, and 

Fig. 1.  Locations of the target trees with dendrometer bands (dots on the map) in the 24-ha plot (600 × 400 m). Differently sized 
dots indicate different diameters at breast height. Elevation contour lines are shown at the 10-m scale. The 40 × 40 m quadrats 
plotted with dashed lines were randomly placed to sample trees for installing dendrometer bands (see Methods for detailed 
description).
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intact leaves were sampled for each tree, scanned for area, 
and dried 48 h at 60°C to measure mass. Leaf stomatal 
density was determined as the number of stomata per 
unit area using lamina impressions (Sachs and 
Novoplansky 1993, Ding et al. 2011). The sampled leaves 
were fresh and healthy leaves without any dirt or damage 
to the lower epidermis. Three impressions from each leaf 
were taken back to the lab and the number of stomata 
was counted under a microscope (Nikon 80i). LN and 
LP were determined using Kjeldahl method (Kjeltec 
2200, FOSS, Höganäs, Sweden) and Mo-Sb colori
metric method (UV-2550 Spectrophotometer; Shimadzu, 
Kyoto, Japan) separately in the lab.

Environmental factors

Four topographic factors (elevation, convexity, slope, 
and aspect) and 11 soil nutrients (N, Fe, Mn, Zn, Cu, 
K, P, Ca, Mg, B, Al), and soil pH were used in our 
study. Briefly, elevation was quantified at every 20 m in 
the GTS FDP and convexity, slope, and aspect of each 
20  ×  20  m subplot was determined. These data were 
then used to assign values to each of the target trees. 
Soil nutrients were similarly quantified with the excep-
tion of soil cores being taken every 30 m in a large grid 
with three additional samples taken around these points 
in random distances and directions. These data were 
then used with kriging to provide soil nutrient maps for 
the plot. A more detailed description for the measure-
ment of these factors can be found in Legendre et  al. 
(2009) and Zhang et al. (2011).

Neighborhood composition

The composition of the neighborhood, specifically the 
identity, number, size of, and distance to neighboring trees, 
are expected to be related to target tree performance. For 
example, a high density of conspecific neighbors should 
negatively influence performance via competition for 
shared resources or shared pests. Therefore, we quantified 
conspecific and heterospecific total basal area and abun-
dance for neighboring trees for each target individual 
within 10  m to characterize the biotic environment of 
individual trees. As neighborhood competition is often 
considered to be asymmetric, we only analyzed the larger 
neighboring individuals (neighbors with DBH larger than 
the focal tree; we also provided one model with all neigh-
bors in Appendix S1: Fig. S3). The variables measured 
were conspecific basal area (BA-c), heterospecific basal 
area (BA-h), conspecific abundance (AB-c), and heter-
ospecific abundance (AB-h).

Statistics

Pearson correlation analysis for growth rates.—We 
calculated Pearson correlations to test the pairwise rela-
tionships between AGR-5, AGR-2, AGR-W, and AGR- 
C and to evaluate the seasonal variation of tree growth 
and variation in long- and short-term growth (Fig.  2). 

All variables were log-transformed or squared-root 
transformed in order to normalize them prior to analy-
sis. The goal of this approach was to determine how well 
measurements from censuses separated by longer periods 
of time were correlated with more frequent measures and 
whether species growth between seasons in a year was 
correlated. Because species are non-independent entities 
due to shared descent, phylogenetic comparative meth-
ods may be necessary if the traits under investigation 
have phylogenetic signal. In our previous work in this 
forest plot, we have shown that the functional traits in 
this forest lack phylogenetic signal (Liu et al. 2013). We 
therefore did not perform phylogenetically controlled 
comparisons (e.g., independent contrasts).

Structural equation model relating individual-level growth 
and traits at individual/species level and growth to the 
abiotic and biotic environment.—One of our motiva-
tions for this study was to explore the causal relationship 
among abiotic environmental factors, neighborhood 
composition, functional traits, and growth rates. To this 
end, we used structural equation models (SEMs) to es-
timate the path coefficients and variation of dependent 
variables. We hypothesized that abiotic environmental 
factors and neighborhood composition first jointly affect 
the functional trait values of a target individual tree and 
functional traits will directly and ultimately affect tree 
growth rate. In other words, we expected that abiotic 
and biotic environment affect tree growth indirectly via 
their effect on plant traits. Nevertheless, we also tested 
direct environmental effects on growth rates by includ-
ing direct pathways in the SEMs. Alternative pathways 
investigated included the direct effect of abiotic environ-
mental factors on neighborhood composition and plant 
traits. We assumed that functional traits, environmen-
tal factors, and neighborhood composition were latent 
variables in the SEMs, each related to the real meas-
ured variables. Additionally, we wanted to test whether 
individual-level traits are better predictors of tree growth 
than species-level traits. To address this, we made an-
other SEM where all other variables were the same as 
in the individual-level traits SEM, but trait values were 
substituted with species-level mean traits values. Then 
we could compare the predictive power between these 
two SEMs. The model was fit using maximum likelihood 
as implemented in the R package lavaan (Rosseel 2012).

Linear regression model relating functional traits to growth 
rates.—A final goal of our study was to explore whether 
the growth rate of an individual was more strongly pre-
dicted by the traits measured on that individual rather 
than the mean trait value for that species without any 
contextual information (i.e., knowledge of values for 
other traits on the individual or the abiotic and biotic 
environment). Trait values at species level were calculated 
as the mean value of all individual trees with dendrometer 
for each species. Four functional traits (height, SLA, Ks, 
and SD) were selected according to our results in SEMs. 
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Linear regression models were used to evaluate growth–
trait relationships using trait values at both individual 
and species levels. All analyses were conducted using R 
statistical software (R Development Core Team 2008).

Results

Relationship between different growth rates

The annual growth rate calculated from a 2-yr census 
interval using dendrometers (AGR-2) was significantly 
related to the annual growth rate calculated from a 5-yr 
census interval using diameter tapes (AGR-5) and the 
annual growth rate measured using dendrometers in the 
warm (AGR-W) and cold (AGR-C) seasons for individ-
ual trees (Fig. 2). There was a particularly strong positive 
relationship between AGR-2 and AGR-W (r  =  0.97, 
P  <  0.001) and a weaker one between AGR-2 and 
AGR-C (r  =  0.82, P  <  0.001). AGR-W and AGR-C 
were also significantly correlated (r = 0.71, P < 0.001), 
with AGR-W > AGR-C (Fig. 2). The positive but not 
very strong relationship between AGR-5 and AGR-2 
(r = 0.63, P < 0.001) showed that the long-term meas-
urements based on diameter tapes and more frequent 
measurements using dendrometers were significantly 
correlated, but with substantial variation left unex-
plained (Fig.  2). The absolute growth rate varied con-
siderably among individuals within species and among 
different species (Appendix S1: Fig. S1).

Relationship between growth rates, functional 
traits, environmental factors and neighborhood 

competition effects

Results from the individual-level trait SEM showed 
that the strongest statistical relationships in the four best 
structural equation models (SEMs), one for each type of 
annual growth rate, was between functional trait and 
growth rates. The SEMs all supported strong positive 
direct relationships between functional trait and growth 
rates, with coefficients much larger than direct effects 
from environmental factors and neighborhood composi-
tion (Fig. 3). The functional traits that were cumulatively 
positively related to the traits latent variable, that were 
predictive of AGR-5, AGR-2, AGR-W, and AGR-C 
were tree height, SLA, Ks, and SD. The other traits were 
not included in our most strongly supported SEMs. The 
environment latent variable had a significant but weaker 
direct relationship with all types of annual growth rates 
and also directly and negatively related with the neigh-
borhood composition (Fig. 3). The environmental factors 
that were selected for inclusion in the environment latent 
variable included six soil nutrients (Ca, Zn, K, Mn, Cu, 
Mg) and pH. None of the topographic factors were 
selected for inclusion in the model. The neighborhood 
composition variable, represented by conspecific basal 
area of neighbor trees, had a marginal significant 
(P < 0.1; Fig. 3b, c) or nonsignificant (Fig. 3a, d) negative 
and direct effect on the annual growth rates in each SEM 

Fig.  2.  Pearson correlations between annual growth rates for the same individual using different measurement protocols 
(***P < 0.001). AGR-5, annual average growth rate calculated from a 5-yr census interval; AGR-2, annual average growth rate 
calculated from a 2-yr census interval using dendrometer data; AGR-W, annual average growth rate for the warm season using 
dendrometer data; AGR-C, annual average growth rate for the cold season using dendrometer data.
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model, while its effect on the functional trait latent 
variable was much stronger and positive in all models 
(Fig. 3). Overall, the coefficients and relationships in the 
SEMs were very similar for AGR-5, AGR-2, AGR-W, 
and AGR-C (Fig. 3). In sum, functional traits together 
with neighborhood composition and environmental fac-
tors explained up to 86% of the variation in growth rates, 
while environmental factors and neighborhood compo-
sition explained up to 69% of the variation in functional 
trait (Fig. 3d).

The SEMs using the species-level trait data showed that 
the variation of growth rates explained by traits together 
with neighborhood composition and environmental fac-
tor were much less than that in the individual-level SEMs 

(species-level up to 45%; Appendix S1: Fig. S2). In addi-
tion, the direct effects from neighborhood composition 
and environment factor to functional traits were also 
weaker in all four species-level SEMs than that in the 
individual-level SEMs (Appendix S1: Fig. S2).

Trait effects on growth rates at different levels

The results from the linear regression models showed 
that tree height was the trait with the strongest relation-
ship with growth rates (Fig.  4; Appendix S1: Fig. S4, 
Table S2). The significant relationships between height 
and growth rates were stronger for species-level data 
(0.07  <  R2  <  0.21) and weaker for the individual-level 

Fig.  3.  The structural equation models for the effect of functional traits at individual level, environmental factors, and 
neighborhood composition on (a) AGR-5, (b) AGR-2, (c) AGR-W, and (d) AGR-C. Arrows represent the hypothesized causal 
relationships between variables. Green color indicates positive relationships. Orange color indicates negative relationships. Arrow 
width indicates the strength of the relationship. Values next to the arrows are path coefficients (standardized partial regression 
coefficients) with associated statistical significance (***P < 0.001; **P < 0.01; *P < 0.05; (*)P < 0.1; ns, non significant). Values at 
the upper right corner of variables represent the percentage of variance explained by the model. Variable abbreviations for growth 
variables are the same as in Fig.  2; Abbreviations of AGR-5, AGR-2, AGR-W, and AGR-C are the same as in Fig.  2; Env, 
environmental factors; BA-c, conspecific basal area; SLA, specific leaf area; Ks, specific hydraulic conductivity; SD, stomatal 
density.
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data (0.03  <  R2  <  0.14). Both specific leaf area and 
stomatal density were only significantly related to 
AGR-2 and AGR-C with slightly stronger relationships 
detected at the species level (0.03 < R2 < 0.05 for SLA 
and 0.005 < R2 < 0.03 for SD). Although the correlations 
between stomatal density and AGR-2 was significant, it 
was quite weak (R2 < 0.005; Appendix S1: Fig. S4, Table 
S2). Specific hydraulic conductivity was significantly but 
very weekly correlated with AGR-5 and AGR-2 at spe-
cies level (R2 = 0.004 and 0.005), but not at the individual 
level, while it was significantly correlated with AGR-C 
at both levels (Appendix S1: Fig. S4, Table S2).

Discussion

A critical goal for functionally based ecology and 
evolution is to link individual performance to organis-
mal function. Trait-based predictions of tree growth 
have often resulted in relatively little variation explained 
(e.g., Poorter et al. 2008, Wright et al. 2010). However, 
this work generally has failed to relate the growth of an 
individual to traits measured on that same individual 
while simultaneously considering the abiotic and biotic 
context in which that individual was found. In this study, 
we modeled the growth rate for 822 individual trees in 
a subtropical forest belonging to 59 species by combining 
data regarding functional traits, environmental factors, 
and neighborhood composition based at the individual 
level. We found that functional traits were the strongest 
direct predictors of tree growth rates, while environmen-
tal factors and neighborhood composition directly 

affected growth to a lesser degree or indirectly affected 
growth through their direct interaction with traits. 
Additionally, the inconsistent results from SEMs and 
linear regression between species-level and individual-
level traits showed that functional traits measured at the 
individual level are stronger predictors of individual tree 
growth than species-level mean values when considering 
the phenotypic and environmental contexts. In the fol-
lowing sub-sections, we discuss the results in detail.

Trait–growth relationships at the individual level with 
phenotypic and environmental context

The statistical relationships from the structural equa-
tion modeling (SEM) between growth rates, functional 
traits, environmental factors and neighborhood compo-
sition were statistically similar between AGR-2 and 
AGR-W (Fig.  3b, c), which strongly suggests that the 
average annual growth of subtropical trees was largely 
determined by its performance in the warm season. This 
is confirmed by the high correlation coefficient between 
AGR-2 and AGR-W (Fig. 2). The SEMs for these two 
growth rates showed that functional traits predict tree 
growth in a direct way. Here the functional trait latent 
variable was a combination of height, specific leaf area 
(SLA), xylem-specific hydraulic conductivity (Ks), and 
stomatal density (SD), where each was positively related 
to the functional trait latent variable and therefore 
growth. Height was the trait most strongly correlated 
with the functional trait latent variable. The importance 
of this trait is consistent with previous studies from trop-
ical and temperate forests. In the tropics, for example, 
Poorter et al. (2008) has shown that tree growth rate is 
higher in trees with greater maximum tree height in five 
Neotropical forests and Herault et al. (2011) has shown 
that growth increases rapidly with tree height in a low-
land Neotropical forest. In the temperate zone, juvenile 
growth in New Zealand forests and adult tree growth 
in Spanish forests have been linked to the maximum 
height of species (Martinez-Vilalta et  al. 2010, Russo 
et  al. 2010). The biological explanation proposed to 
underlie these relationships is that taller trees are more 
able to access light in a closed-canopy forest (Poorter 
et  al. 2006). Along with height, Ks and SD were posi-
tively related to the functional traits latent variable and 
therefore growth (Fig.  3). High values of Ks indicate 
the ability to rapidly move water to the site of photo-
synthesis and high SD values indicate the ability of the 
plant to rapidly take up CO2 for fixation. Thus, high 
values of all three of these traits are representative of 
an individual with an acquisitive resource-use strategy 
that should be mechanistically linked to faster growth 
rates and our results support this prediction.

The SEMs also showed that the environmental factors 
not only directly and positively affect tree performance, 
but also largely influenced the neighborhood composi-
tion around a target individual and that composition 
interacted with the latent trait variable to influence 

Fig. 4.  Relation between tree height and individual growth 
rate based on two years of growth measured using dendrometers. 
Individual-level data are gray dots and species-level data are 
black dots. Abbreviation is the same as in Fig. 2. The x-axis for 
height in on a log scale and y-axis for AGR-2 is on a square-root 
scale. ***P < 0.001.
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growth, though both effects were generally weak (Fig. 3). 
Here the environment soil latent variable included sev-
eral soil cations and pH indicating that more fertile soils 
tend to favor tree growth. An increased concentration 
and availability of soil macronutrients being correlated 
to faster growth is not terribly surprising. Studies from 
both natural ecosystems and manipulative experiments 
have shown that macronutrients are critical to plant 
health and overall tree performance (Andersen et  al. 
2010, Wright et  al. 2011, Baribault et  al. 2012). For 
example, potassium addition tends to increase growth 
rates, as potassium is a limiting nutrient in several phys-
iological activities (e.g., phloem transport and photo-
synthesis; Tripler et  al. 2006) and calcium shows a 
positive relationship with tree growth, as calcium plays 
an import role in the physiological processes related with 
stability and structural integrity of biological tissues 
(e.g., membrane structure and stomatal function; 
McLaughlin and Wimmer 1999). These taken together 
demonstrate a clear mechanistic positive linkage between 
favorable soil nutrient conditions, acquisitive resource-
use strategies, and ultimately, faster growth on the indi-
vidual level.

However, the effect of environmental factors on 
growth rates was also partly indirectly explained via a 
neighborhood composition effect. The neighborhood 
composition, represented by conspecific basal area, 
showed a marginal significant negative (P  <  0.1) and 
direct effect on AGR-2 and AGR-W (Fig.  3b, c). In 
other words, the growth rate of target trees decreased 
as the size of surrounding conspecific trees increased, 
but this trend was on the boundary of statistical signif-
icance. On the other hand, conspecific basal area showed 
strong and positive effects on trait latent variables, while 
traits also showed positive and strong effect on growth 
rates. Combined, both results indicate that the negative 
competitive effect among neighbor species/trees, as they 
have high similarity in resource requirement, is moder-
ated by the competitive strategies of plant functional 
traits, which will finally reflected on plant performance 
(Uriarte et al. 2010).

The SEMs for AGR-5, representing long-term 
growth, and AGR-2, representing short-term growth, 
differed in several ways (Fig. 3a, b). First, although the 
functional trait latent variable had a direct and positive 
effect on growth rate in the AGR-5 SEM as well as in 
the AGR-2 SEM, it tended to be much stronger for the 
AGR-2 SEM. Second, the effect of the neighborhood 
composition latent variable to tree growth rates was not 
significant in AGR-5 SEM. Third, AGR-2 SEM 
explained much more variation in growth rates than 
AGR-5 SEM (72% vs. 12%). This indicates short-term 
growth rates are largely governed by plant traits, while 
this effect will be moderated by other undetected vari-
ables in the longer term. It also showed that the den-
drometers are providing more refined information for 
tree performance: It would be more reliable to use the 
dendrometer data.

Trait–growth models using individual vs. species-level 
trait data

Next we generated a new series of SEMs that 
were  identical aside from using species-level mean trait 
values instead of the individual-level trait data. The 
results show that the SEMs using species-level trait data 
modeled growth worse than those original models that 
used individual-level data. These results highlight the 
value of using individual-level data and support recent 
work stating that the aggregation of individual-level data 
results in an important loss of information and it should 
be avoided if  at all possible (e.g., Clark et al. 2011).

The SEMs we constructed utilized data for multiple 
traits (i.e., the phenotypic context) and soil and neigh-
borhood compositions (i.e., the abiotic and biotic envi-
ronmental context). In these models, individual-level trait 
data outperformed species-level data. We also wanted to 
quantify whether single individual-level traits were better 
predictors of growth than species-level traits without this 
contextual information. To this end, we conducted linear 
regressions analyses using single traits. The results 
showed that height was the single best predictor of 
growth (Fig. 4 and Appendix S1: Table S2). The averaged 
specific leaf area and stomatal density values explained 
slightly more variation in growth than individual trait 
values in a couple of instances, but the variation 
explained was very small (Appendix S1: Table S2). 
Specific hydraulic conductivity was not significantly 
related with three of four growth rates at individual level, 
only weekly correlated with growth rates at species level. 
Thus, the information and predictive ability gained by 
measuring individual-level trait data in our study system 
is only strongly realized when simultaneously taking into 
consideration the phenotypic and environmental context. 
The phenotypic context itself  of an individual trait, in 
particular, is frequently ignored in trait–growth studies 
and this ignorance is problematic. Specifically, important 
traits are not perfectly coordinated and there is freedom 
to vary and explore different regions of multivariate trait 
space within species (e.g., Marks and Lechowicz 2006) 
such that an increase in one trait that might influence 
growth may not be related at all to the change in another 
key trait related to growth and without knowing how 
both change from one individual to the next we may 
never strongly model their growth upon the basis of 
functional traits. Thus, future work that considers mul-
tivariate phenotypes and how individual axes vary across 
individuals within species is greatly needed.

Conclusions

A key goal in functional and community ecology is 
to successfully link organismal traits to performance. 
Previous work in tree assemblages that has correlated 
average functional trait values with average growth rates 
has reported weak statistical relationships. It is typically 
argued that individual-level trait data and information 
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about the abiotic and biotic environment of each indi-
vidual are needed to generate stronger predictions, but 
this has not been tested. Here we have shown that 
individual-level functional traits strongly predict individ-
ual tree growth in a subtropical forest. However, the 
strength of these predictions is facilitated by using infor-
mation regarding the soil environment, identity of neigh-
boring individuals and other trait values for the same 
individual. Without this contextual information, single 
trait values taken from an individual are often no better 
predictors of individual growth than an average trait 
value for the population or species. Furthermore, neigh-
borhood demographic modeling analyses that utilize 
species mean trait values across all individuals miss a 
great deal of information regarding the drivers of indi-
vidual demography and ultimately community structure 
because individual-level traits and demographic rates 
within species vary in relation to the abiotic and biotic 
environment. Given these results, we argue that 
individual-level trait information greatly refines our 
understanding of how traits link to performance and 
community structure, dynamics, and assembly, but it is 
essential that such investigations consider the context in 
which the individual is found otherwise the potential 
value of individual-level trait data will not be realized.
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