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Abstract

Aims
Recent mechanistic explanations for community assembly focus on 
the debates surrounding niche-based deterministic and dispersal-
based stochastic models. This body of work has emphasized the 
importance of both habitat filtering and dispersal limitation, and many 
of these works have utilized the assumption of species spatial inde-
pendence to simplify the complexity of the spatial modeling in natural 
communities when given dispersal limitation and/or habitat filtering. 
One potential drawback of this simplification is that it does not con-
sider species interactions and how they may influence the spatial dis-
tribution of species, phylogenetic and functional diversity. Here, we 
assess the validity of the assumption of species spatial independence 
using data from a subtropical forest plot in southeastern China.

Methods
We use the four most commonly employed spatial statistical mod-
els—the homogeneous Poisson process representing pure random 
effect, the heterogeneous Poisson process for the effect of habitat 
heterogeneity, the homogenous Thomas process for sole dispersal 
limitation and the heterogeneous Thomas process for joint effect of 

habitat heterogeneity and dispersal limitation—to investigate the 
contribution of different mechanisms in shaping the species, phylo-
genetic and functional structures of communities.

Important Findings
Our evidence from species, phylogenetic and functional diversity 
demonstrates that the habitat filtering and/or dispersal-based mod-
els perform well and the assumption of species spatial independ-
ence is relatively valid at larger scales (50 × 50 m). Conversely, at 
local scales (10 × 10 and 20 × 20 m), the models often fail to predict 
the species, phylogenetic and functional diversity, suggesting that 
the assumption of species spatial independence is invalid and that 
biotic interactions are increasingly important at these spatial scales.
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Introduction
In order to simplify the complexity of natural systems, spe-
cies spatial independence is a default assumption in many 
theoretical models (Harte et al. 2005; Volkov et al. 2007) and 
empirical studies (Shen et al. 2009; Wang et al. 2011) of com-
munity assembly. Over the past decade, two opposing families 
of hypotheses have been at the center of the debate regarding 

what processes underlie community patterns: the niche theory 
that invokes the important role of niche-based habitat filter-
ing and the neutral theory that emphasizes the central role 
of seed dispersal and demographic stochasticity in shaping 
patterns of community structure and diversity. This debate 
has led to a general consensus that the observed patterns of 
community structure and diversity are simultaneously shaped 
by niche-based environmental processes and dispersal-based 
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spatial processes. Thus, it appears that the observed patterns of 
community structure and diversity can be largely explained by 
only habitat filtering and dispersal limitation without having 
to consider other important ecological processes such as direct 
and indirect species interactions. For example, recent research, 
that assumes spatial independence of species by default, uti-
lizes spatial point process models to show that the species–area 
relationship (Shen et al. 2009), the species abundance distribu-
tion (Cheng et al. 2012) and species beta diversity (Wang et al. 
2011) can be explained quite well by models that incorporate 
only dispersal limitation and habitat filtering (invoked by car-
rying capacity of populations alone in these studies).

However, the assumption of species spatial independence is 
inconsistent with other evidence that shows intraspecific and 
interspecific interactions are important determinants of com-
munity structure and diversity (Brooker et al. 2008; Maestre 
et al. 2009; Terborgh 2012). For example, Wiegand et al. (2007) 
found that species that have negative and positive facilitative 
interactions with other species dominated the tropical forests 
in Barro Colorado Island, Panama and Sinharaja, Sri Lanka at 
local scales (<20 m) and were therefore not well modeled using 
spatial point processes models that assume spatial independ-
ence. Further, many studies that investigate spatial scale and 
co-occurrence have demonstrated an increase in the phyloge-
netic and functional dissimilarity of species at local scales (Kraft 
and Ackerly 2010; Stubbs and Wilson 2004; Swenson and 
Enquist 2009; Swenson et al. 2007). These findings challenge 
the assumption of species spatial independence in above-men-
tioned studies and suggest that strong biotic interactions should 
produce some detectable spatial structure of community diver-
sity that would be significantly different from those shaped by 
species spatial independence. Here, we assess the validity of 
the species spatial independence assumption across scales with 
respect to species, phylogenetic and functional diversity and 
argue that community assembly is more than habitat filtering 
and dispersal limitation particularly at local scales.

We performed an assessment of the assumption of species 
spatial independence and tested the prediction of species, phy-
logenetic and functional dimensions of biodiversity across spa-
tial scales from the same spatial point processes by Cheng et al. 
(2012), Lin et al. (2011), Shen et al. (2009), Wang et al. (2011) 
and Wiegand et al. (2007). Spatial point processes are stochas-
tic models that describe the spatial pattern formed by the loca-
tions of objects in two or more dimensional space. We utilized 
these spatial point processes to simulate the effect of habitat 
heterogeneity assumed by habitat filtering-based approaches, 
dispersal limitation as assumed by neutral approaches, and 
their combination. Specifically, the approaches used in these 
previous studies include four spatial statistical processes: (i) 
homogeneous Poisson processes simulating pure random 
effects, (ii) heterogeneous Poisson processes for the effect of 
habitat heterogeneity, (iii) homogeneous Thomas processes, 
also called Poisson cluster models, implementing the effect of 
dispersal limitation without habitat heterogeneity (Plotkin et al. 
2000; Potts et al. 2004; Seidler and Plotkin 2006) and finally 

(iv) heterogeneous Thomas processes for the joint effect of 
habitat heterogeneity and dispersal limitation (Waagepetersen 
2007; Waagepetersen and Guan 2009). Using these four mod-
els, Cheng et al. (2012), Lin et al. (2011), Shen et al. (2009) 
and Wang et al. (2011) successfully explained species aggre-
gation, species–area relationships, beta diversity and species 
abundance distributions in tree communities. However, these 
four models focus on only three ecological processes of com-
munity assembly, i.e. completely random spatial distributions 
(random effects), the effect of habitat heterogeneity and dis-
persal limitation: they do not consider species interactions 
occurring at any spatial scale. Here, we show that the above 
four spatial statistical models representing random effects, 
habitat heterogeneity, dispersal limitation and their joint effect 
are not sufficient to explain species richness and phylogenetic 
and functional structure of communities at local scales, but 
they perform relatively well when predicting these biodiver-
sity patterns at larger spatial scales. We demonstrate this by 
comparing the simulated species richness and phylogenetic 
and functional structure from the four spatial statistical models 
with empirical data from a tree inventory plot in a subtropical 
forest in southeastern China.

Materials and Methods
Our analyses used data from the Gutianshan 24-ha forest 
dynamics plot. The plot is rectangular (600 × 400 m) in which 
all trees with DBH (i.e. diameter at breast height, which is 1.3 
m above ground) ≥1 cm in the plot were tagged, identified, 
measured and spatially mapped. The evergreen broad-leaved 
subtropical forest in the plot is the representative vegetation 
of subtropical China dominated by Castanopsis eyrei (Fagaceae), 
Schima superba (Theaceae) and Pinus massoniana (Pinaceae). 
A  total of 140 700 individuals belonging to 48 families and 
159 species were recorded in the plot during the 2005 census. 
Detailed descriptions of climate, topography and the flora can 
be found in Cheng et al. (2012), Legendre et al. (2009) and 
Shen et al. (2009).

Data and spatial statistical models

A total of 102 tree species with DBH ≥1 cm and abundance ≥24 
individuals were used in this study to meet the requirements 
of minimal population sizes for accurate spatial modeling 
(Cheng et al. 2012; Shen et al. 2009). The habitat heteroge-
neity in the Gutianshan plot was represented by topographic 
and edaphic variables (Cheng et al. 2012). Specifically, we first 
obtained the elevation of the four corners for every 5 × 5-m 
subplot from an ordinary kriging analysis using the elevation 
data measured in a topographic survey of the plot. The topo-
graphic variables of each 5 × 5-m quadrat, including mean alti-
tude, convexity, slope and aspect, were then calculated using 
elevation of every 5 × 5-m quadrat (Legendre et al. 2009). Soil 
moisture, bulk density, nitrogen mineralization rate (Nmin), 
pH, together with 16 soil nutrients including total carbon, 
total nitrogen, total phosphorus, available Fe, Mn, Zn, Cu, K, 
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P, Ca, Mg, Na, B, Si, N (including NH4
+ and NO3

−) and Al were 
all quantified following the lab protocol outlined in John et al. 
(2007) and these data were interpolated to a spatial grain of 
5 × 5 m using ordinary kriging following John et  al. (2007). 
We then performed a principal component (PC) analysis on 
the topographic and soil variables and chose the first four PCs 
of 25 topographic and edaphic variables explaining 99.94% of 
the variation of 25 variables to reduce redundant information 
among covarying habitat variables and to minimize the pos-
sibility of overfitting (John et al. 2007; Shen et al. 2009). The 
details of soil sampling and measurement of soil nutrients can 
be found in Cheng et al. (2012) and Zhang et al. (2011).

A molecular community phylogeny was reconstructed 
for the tree community in the Gutianshan plot. Specifically, 
three commonly used plant DNA barcode loci (rbcL, matK and 
trnH-psbA) were sequenced and assembled into a three-locus 
supermatrix. The supermatrix was generated by globally align-
ing the matK and rbcL and aligning the trnH-psbA sequences 
within families using MUSCLE (Edgar 2004). Maximum 
likelihood and maximum parsimony algorithms were subse-
quently used to reconstruct community phylogenies for the 
plot using RAxML (Stamatakis et al. 2008). A bootstrap analy-
sis with 1000 replicates was conducted to assess the percent-
age support for each node. Finally, an ultrametric tree was 
obtained using the nonparametric rate smoothing approach 
in the r8s software package (Sanderson 2003). Detailed meth-
ods regarding the extraction, sequencing, alignment and phy-
logenetic inference can be found in Kress et al. (2009).

We measured leaf area (LA), specific leaf area (SLA), wood 
density (WD), seed mass (SM) and documented maximum 
height (MH) for the species in the Gutianshan plot. The 
trait collection protocols for the Gutianshan plot followed 
Cornelissen et al. (2003) with the exception of WD, which fol-
lowed the protocols of Wright et al. (2010). The MH values for 
species in the Gutianshan plot were estimated using values 
reported in the Flora of China (Wu et al. 1994–2009). Previous 
work has suggested that these traits have significant phylo-
genetic signal in the Gutianshan forest plot (Swenson et  al. 
2012). For each trait, a dendrogram was constructed using 
UPGMA (Unweighted Pair Group Method with Arithmetic 
Mean) clustering based on a Euclidean distance matrix rep-
resenting interspecific trait similarity with species-level mean 
trait values of each species.

To compare our results with the results from Cheng et al. 
(2012), Lin et al. (2011), Shen et al. (2009) and Wang et al. 
(2011), we modeled the same four spatial statistical processes, 
i.e. the homogeneous Poisson process representing pure ran-
dom effect, the heterogeneous Poisson process for the effect 
of habitat heterogeneity, the homogenous Thomas process 
for sole dispersal limitation and the heterogeneous Thomas 
process for the joint effect of habitat heterogeneity and dis-
persal limitation, to investigate the contribution of different 
mechanisms in shaping the species, phylogenetic and func-
tional structure of communities. The model details and model 
parameterization can be found in Cheng et al. (2012), Lin et al. 
(2011), Shen et al. (2009) and Wang et al. (2011).

We first parameterized the four spatial statistical models 
using the spatial distributional data of each species in the 
Gutianshan plot. Subsequently, we used the four parameter-
ized models of each species to simulate the spatial distribution 
of each species in the entire plot. Then we used an assump-
tion of species spatial independence to overlay simulated tree 
distributions of all species to acquire the simulated commu-
nity composition. In this study, we obtained 100 simulated 
communities for each model. Finally, we grouped the trees of 
observed community and simulated communities into terri-
tory units corresponding to three grain sizes of 10 × 10, 20 × 20 
and 50 × 50 m and counted the individuals of the 102 tree 
species in each subplot.

To test our hypothesis regarding the effect of habitat het-
erogeneity and dispersal limitation on species richness and 
phylogenetic and functional structure, we first calculated the 
mean pairwise distance (MPD) and mean nearest neighbor 
distance (MNND) using the molecular phylogeny or a func-
tional trait dendrogram (Webb et al. 2008). Then we calculated 
a standardized effect size (SES) of MPD and MNND using the 
mean and standard deviation of the null distribution as fol-
lows (Swenson et al. 2006; Webb et al. 2002):

SES MPD = 1  MPD  rndMPD /sdrndMPD

SES MNND = 1  MNND

⋅

⋅

− −
−

×

×
( )

   rnd /sdrndMNND MNND−( )

Where rndMPD and rndMNND are, respectively, the mean 
of MPD and MNND from 999 randomly generated local com-
munity phylogeny for each quadrat by randomly shuffling 
the names of taxa across the tips of the phylogeny or trait 
dendrogram, and sdrndMPD and sdrndMNND are the cor-
responding standard deviations of the randomly generated 
local communities. Next, we compared the species richness 
and the community phylogenetic or functional structure 
between the observed communities and the average value 
of 100 simulated communities for each quadrat using major 
axis regression and adjusted mean sum of squared residual 
(Legendre and Legendre 1998). If the regression line is 
below the 1:1 identity line, the model underestimates the 
species richness and the degree of phylogenetic or func-
tional clustering of communities, whereas if the regression 
line is above the 1:1 identity line, the model overestimates 
the species richness and the degree of phylogenetic or func-
tional clustering of communities. An adjusted mean sum of 
squared residual (MRa) was calculated as follows (Cheng 
et al. 2012; Efron and Tibshirani 1993; Hilborn and Mangel 
1997):

MR  = (   2 )a
R
n k−

where n is the number of subplots, k is the number of param-
eters in a model and R is the sum of squared residuals of each 
subplot (see detail in the Supplementary Material Appendix 1).

The PCs of environmental variables were extracted using 
the R package ‘vegan’ (Oksanen et  al. 2012), simulations 
of spatial distribution were carried out using the R package 
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‘spatstat’ (Baddeley and Turner 2005), the SES·MPD and 
SES·MNND were calculated using the software ‘phylocom’ 
(Webb et al. 2008) and major axis regression was implemented 
using the R package ‘lmodel2’ (Legendre 2009).

Results
The correlation results and the adjusted mean sum of squared 
residual (MRa) between species richness of the observed and 
simulated communities showed that species richness esti-
mated by all four spatial statistical models was only weakly 
correlated with that of observed communities at scales of 
10 × 10 and 20 × 20 m (Fig.  1a and d; Table  1). In contrast, 
species richness estimated by the heterogeneous Poisson pro-
cess, representing the effect of habitat heterogeneity, and the 
heterogeneous Thomas process, representing the joint effect 
of habitat heterogeneity and dispersal limitation, was strongly 

correlated with that of observed communities at scale of 
50 × 50 m (Fig. 1g; Table 1). We do note that there were some 
minor differences between results from correlation coefficient 
and MRa, where the heterogeneous Thomas processes more 
accurately estimated species richness compared to other three 
processes (Fig. 1a and d; Table 1).

Our phylogenetic analysis confirmed our pattern analysis 
of species richness where the simulated community struc-
ture measured by SES·MPD and SES·MNND had higher MRa 
and was less correlated with the observed than the esti-
mated species richness at the scales of 10 × 10 and 20 × 20 
m. The heterogeneous Poisson and heterogeneous Thomas 
processes also estimated community phylogenetic structure 
better at scales 50 × 50 m (Fig. 1; Table 1). The heterogene-
ous Poisson and heterogeneous Thomas processes estimated 
community phylogenetic structure relatively better than the 
homogeneous Poisson and homogeneous Thomas processes 

Figure  1:  comparison of species richness between observed and simulated communities. (a) 2400 10 × 10-m subplots, (d) 600 20 × 20-m 
subplots, (g) 96 50 × 50 m, SES·MPD between observed and simulated communities of (b) 2400 10 × 10-m subplots, (e) 600 20 × 20-m sub-
plots, (h) 96 50 × 50-m subplots and comparison of SES·MNND between observed and simulated SES·MNND of (c) 2400 10 × 10-m subplots, 
(f) 600 20 × 20-m subplots, (i) 96 50 × 50-m subplots in Gutianshan forest dynamic plot. Filled circles represent the comparison of SES·MPD 
or SES·MNND between observed communities and simulated communities by homogeneous Poisson process, while open circles stand for the 
heterogeneous Poisson process, open triangles represent homogeneous Thomas process and open squares represent the heterogeneous Thomas 
process. The solid line stands for the identity relationship with equal values of SES·MPD or SES·MNND for observed and simulated communi-
ties, the dotted line for major axis regression line between SES·MPD of observed and simulated communities by homogeneous Poisson process, 
the dashed line for the heterogeneous Poisson process, the dot-dashed line for the homogeneous Thomas process and the long-dashed line for 
the heterogeneous Thomas process.
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from results of correlation coefficient and MRa (Fig.  1; 
Table 1).

Our functional analyses showed similar results to the spe-
cies richness and phylogenetic analyses with the exception 
of SLA (Fig. 2; Table 1; Supplementary Material Appendix 2 
and 3). For WD, LA, SM and MH, the four spatial statistical 
models underestimated the degree of functional overdisper-
sion and clustering at smaller scales (10 × 10 and 20 × 20 m) 
(Fig. 2; Supplementary Material Appendix 2), and the func-
tional SES·MNND and SES·MPD of simulated communities 
has larger MRa, and were only weakly correlated with the 
functional SES·MNND and SES·MPD of the observed commu-
nities (Table 1; Supplementary Material Appendix 2). Similar 
to the community phylogenetic structure, the heterogeneous 
Poisson and the heterogeneous Thomas processes performed 
better at larger scales based on results of correlation coefficient 
and MRa (Fig. 2; Table 1; Supplementary Material Appendix 2 
and 3). The one exception was SLA, where the heterogeneous 
Poisson and heterogeneous Thomas processes estimated the 
community structure quite well even at small scales.

Discussion
The assumption of species spatial independence is frequently 
used to reduce the complexity of natural communities in 
ecological studies. Point process models have recently been 
used to explore the mechanisms of community assembly par-
ticularly in tree communities. The assumption of the species 

spatial independence is often used to simplify the spatial mod-
eling or in other words, it is explicitly hypothesized in the 
assumption that interspecific interactions do not dictate the 
spatial distributions of trees. Here, we tested the validity of 
the assumption of species spatial independence across scales 
with respect to species, phylogenetic and functional diversity, 
using the four spatial statistical models used in recent studies 
(Cheng et al. 2012; Lin et al. 2011; Shen et al. 2009; Wang et al. 
2011), representing effect of random process, habitat hetero-
geneity, dispersal limitation and their joint effect.

At larger scales (50 × 50 m), our results show that point pro-
cess models do adequately predict the diversity patterns in our 
example dataset and that the spatial independence assump-
tion used in previous studies (Cheng et al. 2012; Lin et al. 2011; 
Shen et al. 2009; Wang et al. 2011) may be adequate at these 
scales and that species interactions were, perhaps unsurpris-
ingly, relatively unimportant at these scales. Specifically, the 
evidence from pattern analysis of species, phylogenetic and 
functional diversity supports that the community diversity 
patterns simulated by the habitat heterogeneity and the joint 
effect of habitat heterogeneity and dispersal limitation were 
strongly correlated with the observed community diversity 
patterns (Fig. 1; Table 1; Supplementary Material Appendix 2 
and 3). Further, the heterogeneous Poisson and heterogene-
ous Thomas processes explained patterns of community bio-
diversity better at larger scales, suggesting a lack of species 
interactions and stronger habitat filtering and dispersal limita-
tion at larger scales (50 × 50 m) (Brunbjerg et al. 2012; Cheng 

Table 1:  correlation and adjusted mean sum of squared residual (in the bracket) of species richness, SES·MPD and SES·MNND of 
community phylogeny and SES·MPD and SES·MNND of WD between observed and simulated communities by four spatial point pattern 
models at different scales

Correlation types Scale (m2)
Homogeneous Poisson 
(purely random)

Heterogeneous  
Poisson (niche)

Homogenous  
Thomas (dispersal)

Heterogeneous Thomas 
(niche + dispersal)

rrichness 10 × 10 −0.036*** (100.269) 0.192*** (61.102) −0.011** (23.725) 0.221*** (22.501)

20 × 20 −0.073** (228.308) 0.329*** (122.627) 0.126** (46.167) 0.383*** (36.069)

50 × 50 −0.014*** (320.831) 0.615*** (126.106) 0.096** (83.009) 0.575** (38.024)

rSES·MPD of phylogeny 10 × 10 −0.018 (0.640) 0.119*** (0.632) −0.005 (0.658) 0.071*** (0.646)

20 × 20 0.022 (0.430) 0.211*** (0.416) −0.036 (0.461) 0.115*** (0.445)

50 × 50 0.017 (0.280) 0.441*** (0.272) −0.040 (0.319) 0.338*** (0.324)

rSES·MNND of phylogeny 10 × 10 −0.027 (0.966) 0.245*** (0.942) −0.003 (0.833) 0.172*** (0.803)

20 × 20 −0.043 (0.548) 0.315*** (0.503) −0.063 (0.595) 0.270*** (0.533)

50 × 50 −0.024 (0.349) 0.415*** (0.285) −0.098 (0.342) 0.372*** (0.314)

rSES·MPD of WD 10 × 10 0.005 (0.440) 0.103*** (0.387) 0.016 (0.350) 0.090*** (0.350)

20 × 20 0.028 (0.288) 0.181* (0.245) 0.028 (0.219) 0.182*** (0.216)

50 × 50 0.161 (0.138) 0.326*** (0.122) −0.091 (0.128) 0.329*** (0.122)

rSES·MNND of WD 10 × 10 0.033 (0.676) 0.025 (0.638) 0.002 (0.542) 0.090*** (0.523)

20 × 20 0.014 (0.259) 0.130*** (0.243) −0.022 (0.236) 0.170*** (0.213)

50 × 50 −0.091 (0.071) 0.592*** (0.056) −0.064 (0.075) 0.637*** (0.050)

rrichness: correlation coefficient between species richness of observed and simulated communities; rSES·MPD of phylogeny: correlation coefficient 
between SES·MPD of observed and simulated communities; rSES·MNND of phylogeny: correlation coefficient between SES·MNND of phylogeny for 
observed and simulated communities; rSES·MPD of WD: correlation coefficient between SES·MPD of WD for observed and simulated communi-
ties; rSES·MNND: correlation coefficient between SES·MNND of WD for observed and simulated communities. *P < 0.05, **P < 0.01, ***P < 0.001.
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et al. 2012; Shen et al. 2009; Swenson and Umaña 2014; Wang 
et al. 2011).

At local scales (10 × 10 and 20 × 20 m), however, commu-
nity species richness and phylogenetic and functional diver-
sity could not be predicted by any of the point process models 
(Fig. 1; Table 1). Although greater sample size at local scales 
may affect the relationship between observed and simulated 
patterns of community species richness and phylogenetic 
and functional diversity, the great discrepancy between the 
results at larger scales (50 × 50 m) and those at local scales 

mainly indicates a failure of these models to incorporate 
important biological information. In particular, these results 
suggest strong local biotic interactions such as negative den-
sity dependence and positive facilitation among species that 
are not modeled dominate at these local scales (Brooker et al. 
2008; Raventós et  al. 2010; Terborgh 2012; Wiegand et  al. 
2007). One exception to this general finding was SLA, where 
the heterogeneous Poisson and the heterogeneous Thomas 
processes explained the diversity of this trait quite well even 
at local scales (10 × 10 and 20 × 20 m). This suggests that SLA 

Figure 2:  comparison of SES·MPD of WD between observed and simulated communities of (a) 2400 10 × 10-m subplots, (c) 600 20 × 20-m 
subplots, (e) 96 50 × 50-m subplots and comparison of SES·MNND of WD between observed and simulated communities of (b) 2400 10 × 10-m 
subplots, (d) 600 20 × 20-m subplots, (f) 96 50 × 50-m subplots in Gutianshan forest dynamic plot. Filled circles represent the comparison of 
SES·MPD or SES·MNND between observed communities and simulated communities by homogeneous Poisson process, while open circles 
stands for the heterogeneous Poisson process, open triangles represent homogeneous Thomas process and open squares represent the het-
erogeneous Thomas process. The solid line stands for the identity relationship with equal values of SES·MPD or SES·MNND for observed and 
simulated communities, the dotted line for major axis regression line between SES·MPD of observed and simulated communities by homogene-
ous Poisson process, the dashed line for the heterogeneous Poisson process, the dot-dashed line for the homogeneous Thomas process and the 
long-dashed line for the heterogeneous Thomas process.
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is related to habitat characteristics more strongly than other 
functional traits on these scales (MH, WD, LA and SM), which 
may not be surprising given that SLA represents species-spe-
cific strategies of construction investment, growth rate and 
resource acquisition (Reich et al. 1997; Wright et al. 2004).

In summary, here we have discussed the increasing usage 
of point process models to investigate the biological processes 
underlying the spatial distribution of biodiversity and the 
default utilization of the assumption of species spatial inde-
pendence in these models. These models have generally been 
used to investigate one dimension of biodiversity, species diver-
sity, but they can be easily extended to other dimensions of 
biodiversity such as functional and phylogenetic diversity as 
we have shown here. The previous success of these models in 
predicting patterns assures that they will continue to be uti-
lized. Despite the success of these models in previous work, we 
argue that the utilization of the assumption in these models 
that species are independently distributed in space may be not 
hold particularly at local scales. We approached this problem by 
examining the ability of the four commonly used point process 
models to predict the three dimensions of biodiversity across 
spatial scales. We found that these models often perform well at 
larger scales for each dimension of biodiversity, thereby demon-
strating their power when operating at large scales. However, 
we also found that at local scales, the models often fail to pre-
dict the dimensions of biodiversity observed. We infer that this 
failure is due to a lack of information regarding species inter-
actions in the models. This is not to suggest that point process 
models are without merit on these or other scales. Rather we 
suggest two important points. First, observed deviations from 
modeled levels of biodiversity across spatial scales can be use-
ful in identifying when, where and why habitat filtering and 
dispersal limitation are not enough to explain the spatial distri-
bution of biodiversity. Second, if researchers are interested in 
modeling tree biodiversity across spatial scales, additional bio-
logical processes such as competition and facilitation may have 
to be incorporated into point process models using Gibbs point 
process models in the future although the practical fitting of 
complex point process models incorporating interspecific inter-
actions of tens to hundreds of species in a community remains 
difficult (Haas et  al. 2011; Illian and Hendrichsen 2010). We 
suggest that phylogenetic and functional information could be 
useful in simplifying the complexity modeling of interspecific 
interactions in point process models.
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online.

Funding
NSFC grant of National Natural Science Foundation of 
China (31170401); Dimensions of biodiversity grant of 

Natural Science Fundation (NSF 1046113); Natural Science 
Foundation of Zhejiang Province (Y5100361).

Acknowledgements
We thank Dr N. Swenson for his valuable comments. We thank Fang 
Teng and Chen Shengwen for their assistance in species identifica-
tion and the Administration Bureau of Gutianshan National Nature 
Reserve for the logistic support. We thank many fieldworkers who 
carried out tree censuses in 2005 and 2010.
Conflict of interest statement. None declared.

References
Baddeley A, Turner R (2005) Spatstat: an r package for analyzing spa-

tial point patterns. J Stat Software 12:1–42.

Brooker RW, Maestre FT, Callaway RM, et al. (2008) Facilitation in 

plant communities: the past, the present, and the future. J Ecol 

96:18–34.

Brunbjerg AK, Borchsenius F, Eiserhardt WL, et al. (2012) Disturbance 

drives phylogenetic community structure in coastal dune vegeta-

tion. J Veg Sci 23:1082–94.

Cheng JJ, Mi XC, Nadrowski K, et al. (2012) Separating the effect of 

mechanisms shaping species-abundance distributions at multiple 

scales in a subtropical forest. Oikos 121:236–44.

Cornelissen JHC, Lavorel S, Garnier E, et al. (2003) A handbook of 

protocols for standardised and easy measurement of plant func-

tional traits worldwide. Aust J Bot 51:335–80.

Edgar RC (2004) Muscle: multiple sequence alignment with high 

accuracy and high throughput. Nucleic Acid Res 32:1792–7.

Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. New 

York: Chapman & Hall.

Haas SE, Hooten MB, Rizzo DM, et al. (2011) Forest species diversity 

reduces disease risk in a generalist plant pathogen invasion. Ecol 

Lett 14:1108–16.

Harte J, Conlisk E, Ostling A, et al. (2005) A theory of spatial structure 

in ecological communities at multiple spatial scales. Ecol Monogr 

75:179–97.

Hilborn R, Mangel M (1997) The Ecological Detective: Confronting Models 

With Data. Princeton, NJ: Princeton University Press.

Illian JB, Hendrichsen DK (2010) Gibbs point process models with 

mixed effects. Environmetrics 21:341–53.

John R, Dalling JW, Harms KE, et al. (2007) Soil nutrients influence 

spatial distributions of tropical tree species. Proc Natl Acad Sci U S A 

104:864–9.

Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests 

of community assembly across spatial scales in an Amazonian for-

est. Ecol Monogr 80:401–22.

Kress WJ, Erickson DL, Jones FA, et al. (2009) Plant DNA barcodes 

and a community phylogeny of a tropical forest dynamics plot in 

panama. Proc Natl Acad Sci U S A 106:18621–6.

Legendre P (2009) Model II Regression. http://cran.r-project.org/ (6 

July 2013, date last accessed). 

Legendre P, Legendre L (1998) Numerical Ecology. Amsterdam, The 

Netherlands: Elsevier Science BV.

 by guest on A
pril 22, 2014

http://jpe.oxfordjournals.org/
D

ow
nloaded from

 

http://cran.r-project.org/
http://jpe.oxfordjournals.org/


Mi et al.     |     Importance of biotic interactions� 133

Legendre P, Mi X, Ren H, et al. (2009) Partitioning beta diversity in a 

subtropical broad-leaved forest of China. Ecology 90:663–74.

Lin YC, Chang LW, Yang KC, et al. (2011) Point patterns of tree distri-

bution determined by habitat heterogeneity and dispersal limita-

tion. Oecologia 165:175–84.

Maestre FT, Callaway RM, Valladares F, et  al. (2009) Refining the 

stress-gradient hypothesis for competition and facilitation in plant 

communities. J Ecol 97:199–205.

Oksanen J, Blanchet FG, Kindt R, et  al. (2012) Vegan: Community 

Ecology Package. R Package Version 2.0-4. http://cran.r-project.org/ 

(6 July 2013, date last accessed).

Plotkin JB, Potts MD, Leslie N, et  al. (2000) Species–area curves, 

spatial aggregation, and habitat specialization in tropical forests.  

J Theor Biol 207:81–99.

Potts MD, Davies SJ, Bossert WH, et al. (2004) Habitat heterogeneity and 

niche structure of trees in two tropical rain forests. Oecologia 139:446–53.

Raventós J, Wiegand T, De Luis M (2010) Evidence for the spatial 

segregation hypothesis: a test with nine-year survivorship data in 

a Mediterranean shrubland. Ecology 91:2110–20.

Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global 

convergence in plant functioning. Proc Natl Acad Sci U S A 94:13730–4.

Sanderson MJ (2003) r8s: inferring absolute rates of molecular evo-

lution and divergence times in the absence of a molecular clock. 

Bioinformatics 19:301–2.

Seidler TG, Plotkin JB (2006) Seed dispersal and spatial pattern in 

tropical trees. PLoS Biol 4:2132–7.

Shen G, Yu M, Hu XS, et  al. (2009) Species-area relationships 

explained by the joint effects of dispersal limitation and habitat 

heterogeneity. Ecology 90:3033–41.

Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algo-

rithm for the raxml web servers. Syst Biol 57:758–71.

Stubbs WJ, Wilson JB (2004) Evidence for limiting similarity in a 

sand dune community. J Ecol 92:557–67.

Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a 

neotropical dry forest: implications for phylogenetic and functional 

community ecology. Ecology 90:2161–70.

Swenson NG, Enquist BJ, Pither J, et  al. (2006) The problem and 

promise of scale dependency in community phylogenetics. Ecology 

87:2418–24.

Swenson NG, Enquist BJ, Thompson J, et al. (2007) The influence of 

spatial and size scale on phylogenetic relatedness in tropical forest 

communities. Ecology 88:1770–80.

Swenson NG, Erickson DL, Mi XC, et  al. (2012) Phylogenetic and 

functional alpha and beta diversity in temperate and tropical tree 

communities. Ecology 93:S112–25.

Swenson NG, Umaña MN (2014) Phylofloristics: an example from the 

Lesser Antilles. J Plant Ecol 7:166–75.

Terborgh J (2012) Enemies maintain hyperdiverse tropical forests. 

Am Nat 179:303–14.

Volkov I, Banavar JR, Hubbell SP, et  al. (2007) Patterns of rela-

tive species abundance in rainforests and coral reefs. Nature 

450:45–9.

Waagepetersen RP (2007) An estimating function approach to infer-

ence for inhomogeneous Neyman-Scott processes. Biometrics 

63:252–8.

Waagepetersen R, Guan Y (2009) Two-step estimation for inhomoge-

neous spatial point processes and a simulation study. J Roy Stat Soc 

B 71:685–702.

Wang XG, Wiegand T, Wolf A, et al. (2011) Spatial patterns of tree spe-

cies richness in two temperate forests. J Ecol 99:1382–93.

Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for 

the analysis of phylogenetic community structure and trait evolu-

tion. Bioinformatics 24:2098–100.

Webb CO, Ackerly DD, McPeek MA, et  al. (2002) Phylogenies and 

community ecology. Annu Rev Ecol Systemat 33:475–505.

Wiegand T, Gunatilleke CVS, Gunatilleke I, et al. (2007) How indi-

vidual species structure diversity in tropical forests. Proc Natl Acad 

Sci U S A 104:19029–33.

Wright IJ, Reich PB, Westoby M, et  al. (2004) The worldwide leaf 

economics spectrum. Nature 428:821–7.

Wright SJ, Kitajima K, Kraft NJ, et al. (2010) Functional traits and the 

growth-mortality trade-off in tropical trees. Ecology 91:3664–74.

Wu ZY, Raven PH, Hong DY (1994–2009) Flora of China. Beijing, 

China: Science Press; St Louis, MO: Missouri Botanical Garden 

Press.

Zhang LW, Mi XC, Shao HB, et al. (2011) Strong plant-soil associa-

tions in a heterogeneous subtropical broad-leaved forest. Plant Soil 

347:211–20.

 by guest on A
pril 22, 2014

http://jpe.oxfordjournals.org/
D

ow
nloaded from

 

http://cran.r-project.org/
http://jpe.oxfordjournals.org/

