Floristic composition across a climatic gradient in a neotropical lowland forest

Pyke, Christopher R.1*; Condit, Richard2; Aguilar, Salomón2 & Lao, Suzanne2

1Department of Geography, University of California, Santa Barbara, CA 93106, USA; 2Center for Tropical Forest Science Smithsonian Institution, Smithsonian Tropical Research Institute, Washington, DC 20560-0580, USA; Fax +15072325978; E-mail ctfs@tivoli.si.edu; Corresponding author; Fax +180589933146; E-mail pyke@geog.ucsb.edu

Abstract. This study deals with the floristic composition of lowland tropical forest in the watershed of the Panama Canal. The floristic composition of large trees in 54 forest plots was analysed with respect to environmental factors, including precipitation, geologic parent material, stand age, topography, and soils. The plots contain 824 species of trees with a diameter at breast height ≥ 10 cm and represent a regional flora with exceptional β-diversity. Plot data indicate that the Panamanian forest is strongly spatially structured at the landscape scale with floristic similarity decreasing rapidly as a function of inter-plot geographic distance, especially for distances < 5 km. The ordinations and patterns of endemism across the study area indicate broad floristic associations well correlated with Holdridge life zones. The results indicate the positive aspects of life zone classification at regional scales, while simultaneously highlighting its inadequacy for finer scales of analysis and resource management. Multivariate gradient analysis techniques (Non-metric Multidimensional Distance Scaling and Detrended Correspondence Analysis) show clear patterns of floristic variability correlated with regional precipitation trends, surficial geology, and local soil attributes. Geologic and edaphic conditions, such as acidic soils or excessively drained limestone substrates, appear to override the effects of precipitation and modify forest composition. We conclude that the Panamanian forest shows clear patterns of spatial organization along environmental gradients, predominantly precipitation. The rapid decline in floristic similarity with distance between stands also suggests a role for dispersal limitation and stochastic events.

Keywords: Gradient analysis; Life zone; Precipitation; Spatial analysis; Tropical lowland forest.

Abbreviations: BCI = Barro Colorado Island; NMDS = Non-metric Multidimensional Distance Scaling.

Introduction

Classic studies from temperate latitudes have illustrated local and regional species-level floristic responses to environmental controls (e.g. Whittaker 1965; Gillison & Brewer 1985; Harrison et al. 1992). Few comparable studies exist for lowland Neotropic forests, with several notable exceptions from investigations in the Amazonian rain forest (Duivenvoorden 1995; Tuomisto et al. 1995; Ruokolainen et al. 1997). The majority of work at the landscape-scale has focused on the description of forest physiognomy (Holdridge & Budowski 1959; Webb et al. 1970; Holdridge et al. 1971; Mackey 1993, 1994), relatively small spatial domains (Clark et al. 1998), subsets of more common species (Williams et al. 1973; Clark et al. 1995), or family-level taxonomy (Terborgh & Andresen 1998). This difference is strongly linked to practical and logistical hurdles facing field workers in tropical forests. Researchers have been overwhelmed by forests containing large numbers of superficially similar tree species, and data analysis is frequently hampered by poorly documented floras and limited reference materials. Information on the soils, geology, and even topography underlying tropical forests is typically difficult to acquire and seldom available at appropriate scales (Sollins 1998).

Decades of research at the Smithsonian Institution’s Barro Colorado Island (BCI) field station has provided an exception to these generalizations and a world-class knowledge base about the ecology of the lowland forest (Croat 1978; Leigh 1996). The combination of a well-documented flora, relatively easy access to field sites, and a complex mixture of environmental gradients makes lowland Panama an excellent study area for community analysis at the landscape scale. In this study, the floristic landscape is defined as the 2400 km² area (ca. 60 km × 40 km) bordering the Panama Canal. This study area is nested inside a larger, more poorly defined floristic region that extends into landscapes in adjacent areas of lowland forest. On the local scale, the study considers...
The ecological expression of these climatic parameters across the isthmus is mediated by a diverse set of geologic substrates. The land forms of the Canal watershed are derived from a young and complex geologic terrain composed of either dense, relatively impermeable volcanics or porous, chemically unstable sedimentary rocks and volcanic mudflow deposits (Dietrich et al. 1982). The soils of the watershed have received only rocks and volcanic mudflow deposits (Dietrich et al. 1982). Consequently, efforts to monitor and inventory biodiversity in temperate latitudes have emphasized the distribution of individual species and associated communities (Kiester et al. 1996; Scott & Jennings 1998). Conservation practitioners cannot draw on similar biogeographic resources for tropical forests, and more research toward mapping, interpreting, and ultimately predicting, the distribution of species and species assemblages is needed.

The research presented in this paper addresses these issues by asking several fundamental questions in tropical landscape ecology: 1. How are species assemblages organized across an environmental gradient in a lowland forest? 2. To what extent is the composition of diverse plant communities controlled by environmental factors such as precipitation and geologic substrate? 3. What role do stochastic factors play in organizing the lowland forest landscape?

Diversity in the watershed of the Panama Canal

The lowland forest across the Panamanian isthmus is dominated by a strong climatic gradient. Average annual precipitation ranges from over 3100 mm/yr on the Caribbean coast to less than 1600 mm/yr in Panama City on the Pacific side of the isthmus (Rand & Rand 1982). Along the Caribbean coast, the precipitation regime is strongly influenced by local topography, and the highest positions on the Santa Rita ridge may receive in excess of 4000 mm/yr. The remaining strip of forest along the Canal provides an excellent transect traversing this strong climatic gradient.

The detailed analysis of floristic composition at the landscape-scale provides critical data for conservation activities. Work at the physiognomic and bioclimatic level provides valuable information about forest structure and large-scale organization; however, conservation efforts typically use individual species as their basic operational unit (e.g. the US Endangered Species Act of 1973 or IUCN Red List; but see Riddle & Hafner 1999). Consequently, efforts to monitor and inventory biodiversity in temperate latitudes have emphasized the distribution of individual species and associated communities (Kiester et al. 1996; Scott & Jennings 1998). Conservation practitioners cannot draw on similar biogeographic resources for tropical forests, and more research toward mapping, interpreting, and ultimately predicting, the distribution of species and species assemblages is needed.

Methods

Floristic data

The ecological expression of these climatic parameters across the isthmus is mediated by a diverse set of geologic substrates. The land forms of the Canal watershed are derived from a young and complex geologic terrain composed of either dense, relatively impermeable volcanics or porous, chemically unstable sedimentary rocks and volcanic mudflow deposits (Dietrich et al. 1982). The soils of the watershed have received only cursory investigation, and detailed soil maps do not exist for the majority of the watershed. Dietrich et al. (1982) note that dense volcanic rocks on Barro Colorado Island (BCI) form shallow soils that shift from homogeneous clays on plateaus to stony units on moderately steep slopes.

Botanical work on BCI has identified over 450 species of trees and shrubs (Croat 1978). A computerized flora produced by the Missouri Botanical Garden indicates that the Panama Canal Area contains 855 native species of trees and shrubs, while the entire Republic of Panama (77 000 km²) contains an estimated 2870 species (Condit et al. 1996c). The United Nations Food and Agriculture Organization commissioned a map of the life zones of Panama, and the resulting work indicates the dominance of tropical moist forest at low elevation in the Canal watershed, flanked by bands of premontane wet forest (Holdridge & Budowski 1959). The Holdridge life zones were generated strictly based on a combination of bioclimatic indices and their theoretical associations with known forest categories.

Recent work on forest composition has centered on the 50-ha Forest Dynamics Plot (FDP) maintained by the Smithsonian Institution’s Center for Tropical Forest Science on BCI. The FDP is a prototype for an international network of monitoring plots in more than a dozen tropical countries and has been the subject of intense research since its establishment in 1982 (Hubbell & Foster 1983). Work on BCI has developed a conceptual picture of a complex, dynamic forest with high α-diversity. The composition of the forest appears to respond quickly to climatic forcing, such as drought related to El Niño events (Condit et al. 1995a, 1996b). The relative abundance of individual species has been partially explained through combinations of inter- and intra-specific interactions (Hubbell et al. 1990; Condit et al. 1994; Wills et al. 1997), tree-fall and gap-dynamics (Dalling et al. 1998), habitat specialization (Hubbell & Foster 1983), and dispersal limitation (Harms 1997; Hubbell et al. 1999).

The ecological expression of these climatic parameters across the isthmus is mediated by a diverse set of geologic substrates. The land forms of the Canal watershed are derived from a young and complex geologic terrain composed of either dense, relatively impermeable volcanics or porous, chemically unstable sedimentary rocks and volcanic mudflow deposits (Dietrich et al. 1982). The soils of the watershed have received only cursory investigation, and detailed soil maps do not exist for the majority of the watershed. Dietrich et al. (1982) note that dense volcanic rocks on Barro Colorado Island (BCI) form shallow soils that shift from homogeneous clays on plateaus to stony units on moderately steep slopes.

Botanical work on BCI has identified over 450 species of trees and shrubs (Croat 1978). A computerized flora produced by the Missouri Botanical Garden indicates that the Panama Canal Area contains 855 native species of trees and shrubs, while the entire Republic of Panama (77 000 km²) contains an estimated 2870 species (Condit et al. 1996c). The United Nations Food and Agriculture Organization commissioned a map of the life zones of Panama, and the resulting work indicates the dominance of tropical moist forest at low elevation in the Canal watershed, flanked by bands of premontane wet forest (Holdridge & Budowski 1959). The Holdridge life zones were generated strictly based on a combination of bioclimatic indices and their theoretical associations with known forest categories.

Recent work on forest composition has centered on the 50-ha Forest Dynamics Plot (FDP) maintained by the Smithsonian Institution’s Center for Tropical Forest Science on BCI. The FDP is a prototype for an international network of monitoring plots in more than a dozen tropical countries and has been the subject of intense research since its establishment in 1982 (Hubbell & Foster 1983). Work on BCI has developed a conceptual picture of a complex, dynamic forest with high α-diversity. The composition of the forest appears to respond quickly to climatic forcing, such as drought related to El Niño events (Condit et al. 1995a, 1996b). The relative abundance of individual species has been partially explained through combinations of inter- and intra-specific interactions (Hubbell et al. 1990; Condit et al. 1994; Wills et al. 1997), tree-fall and gap-dynamics (Dalling et al. 1998), habitat specialization (Hubbell & Foster 1983), and dispersal limitation (Harms 1997; Hubbell et al. 1999).
these permanent sites. All the new plots were placed within 5 km of the Panama Canal. Each plot was established as a 100 m × 100 m square with a regular grid of survey markers at 20-m intervals. Nine additional 0.32-ha plots were established farther out in the Canal watershed (> 5 km from the center line of the Canal). These 0.32-ha plots were sampled in the same way as the larger Canal Area plots with the exception of their smaller size. Within each plot, trees ≥ 10 cm diameter at breast height (DBH) were identified to species, tagged, and located with respect to the local grid. Tree specimens from all locations were identified with reference to material maintained by the Smithsonian Tropical Research Institute and the University of Panama. The elevation of each plot was noted and the surrounding terrain was characterized as flat, sloping, or irregular. The age of each stand was inferred from the size of the largest trees and recorded as young, secondary, or old growth. The protocols used for fieldwork and data handling follow those developed for the 50-ha Forest Dynamics Plot on BCI (Condit 1998).

Fisher’s alpha and Shannon index of diversity are used to describe the nature of richness in these plots. Fisher’s alpha assumes that the abundance of species fits a log-series distribution, and uses this assumption to normalize for sample size and area (Fisher et al. 1943; Rosenzweig 1995; Condit et al. 1998). The Shannon index (H’) is based on the proportional abundance of species, and it is related to species richness but it is also influenced by the distribution of species abundance (Magurran 1988). Both indices are provided to facilitate comparisons with other studies.

Environmental data

Each sampling site was characterized with respect to three primary environmental variables: median annual precipitation (mm), cumulative dry season precipitation (mm/December-May), elevation, and geology. A limited set of ancillary data was collected from 23 plots, including pH, depth of A-horizon, color, texture, consistence, and profile morphology. Table 1 summarizes the environmental data available for each plot.

Median annual precipitation was interpolated from meteorological data available from 20 stations within the Panama Canal watershed. A multiple regression model incorporated geographic coordinates (Universal Transverse Mercator, UTM) and plot elevation to predict total annual precipitation:

\[y_{\text{total}} = -17543 - 0.006x_1 + 0.023x_2 + 1.378x_3 \]

(1)

Where \(y_{\text{total}} \) is total annual precipitation in mm per year, \(x_1 \) is the UTM Easting, \(x_2 \) is UTM Northing, and \(x_3 \) is elevation in m; \(R^2 = 0.90 \). The precipitation interpolation procedure was repeated for a simple index of total dry season precipitation (Eq. 2). The goal was to create a complementary climatic index correlating with the degree of seasonality (i.e., severity of dry season) experienced by each plot. Graphical plots of annual precipitation accumulation (data not presented) indicate that the maximum separation between station observations occurred by integrating rainfall between December and May, even though the dry season typically ends by late April. The model formulation was similar to the total annual precipitation interpolation model, and it obtained...
an equivalent fit to the input data:

\[y_{dry} = -1464 - 0.0005 x_1 + 0.019 x_2 + 0.114 x_3 \]

(2)

In this model, \(y_{dry} \) is the cumulative dry-season precipitation in mm, and \(R^2 = 0.90 \).

These measures of moisture availability were primarily chosen because only a limited data set was available from all rainfall stations (geographic coordinates, elevation, and monthly average precipitation). There are many alternative measures (e.g., days for which evapotranspiration exceeds precipitation, months with less than 100 mm total precipitation, etc.), but all these measures reflect the strength of the dry season and are probably highly correlated with one another (Walsh 1996).

All geologic information was based on a United States Geological Survey map of surficial geology for the Panama Canal and vicinity (Woodring et al. 1980). The map was drawn to a scale of 1:100000 and digitized.
as a part of the US. Agency for International Development/INRENARE Project to Monitor the Watershed of the Panama Canal (Condit et al. subm.). Nine different lithologic units are represented in the 54 monitoring plots (Table 2). Preliminary field data collected for this study suggest regional changes in soil attributes in response to the rainfall gradient. At the watershed scale, soil pH declines with increasing annual rainfall. Deviations from this trend are not predictable from mapped parent lithology or geomorphic position, and they may result from unusual land-use histories. Edaphic conditions across the isthmus remain poorly constrained, and ecological studies at the landscape scale would benefit from a campaign of soil mapping and pedological study.

Multivariate techniques for phytosociology and gradient analysis

Four methods were used to explore floristic structure within large tree assemblages in the watershed of the Panama Canal: (1) indirect, multivariate ordination, including Non-metric Multidimensional Distance Scaling (NMDS) and Detrended Correspondence Analysis (DCA); (2) percentage of species with locally restricted ranges; (3) Mantel tests; (4) semi-variogram analyses of spatial structure. These techniques were implemented using the PC-ORD software package (version 3.18, McCune & Mefford 1999) and the S-plus statistical programming language (version 4.0; Anon. 1997). The Sørensen similarity measure was used for cluster and NMDS analysis. Sørensen similarity is annotated as $2A/ (2A+B+C)$, where A is the number of species shared between plots and B and C are the number of species unique to each plot.

An initial NMDS ordination was performed for all 54 plots across the study area. These ordinations clearly showed a floristic gradient for a subset of the study plots, and the analyses were supplemented by a more detailed gradient analysis focused on the 45 1-ha plots adjacent to the Canal. The focused gradient analysis facilitated a more detailed investigation of environmental controls on forest composition, one not possible with the relatively unreliable environmental data available for the outer edges of the watershed. The NMDS gradient analysis was complemented by the use of Detrended Correspondence Analysis (DCA). DCA was used to evaluate relationships between species, genus, and family levels of taxonomic organization and observed patterns of floristic composition across the rainfall gradient. DCA provides eigenvalues that can be used to estimate gradient length (Eilertsen et al. 1990), a feature not available in NMDS. However, analysis of DCA ordination was restricted to only the first ordination axis, as DCA has well-known distortions for higher axes (Hill & Gauch 1980; Gauch. 1982). Mantel tests were also used to examine the relationship between precipitation and forest composition. The input included Sørensen similarity between plots in the first matrix and differences in annual precipitation in the second matrix. While not providing graphical output, the Mantel tests have the benefit of providing complementary statistical information about relationships in the data. Overall, this ensemble of techniques provides a diverse set of data for assessing community patterns.

The NMDS ordination technique places samples in relative positions in ordination space, rather than fitting axes based on sample eigenvalues or other methods for partitioning sample variance. Previous workers have noted that NMDS performs well in data sets with high beta diversity and noisy environmental information (Prentice 1977, 1980). NMDS analysis is constrained by relatively few assumptions about the nature of data to be analysed. However, this strategy also means that NMDS ordination axes do not have a clear, hierarchical rela-

Table 2. The attributes of geologic units described for plots in Table 1. Age given in million years.

<table>
<thead>
<tr>
<th>Map code</th>
<th>Unit name</th>
<th>Geologic Series</th>
<th>Approximate age (stage) (myr)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc</td>
<td>Chagres sandstone</td>
<td>Late Miocene or Early</td>
<td>10 (Lower Tortonian) to 3.5 (Upper Zanclean)</td>
<td>Massive, generally fine grained sandstone</td>
</tr>
<tr>
<td>Tct</td>
<td>Toro limestone (basal member of Chagres sandstone)</td>
<td>Late Miocene or Early</td>
<td>10 (Lower Tortonian) to 3.5 (Upper Zanclean)</td>
<td>Coquina</td>
</tr>
<tr>
<td>Tbo</td>
<td>Miocene basalt</td>
<td>Middle to Late Miocene</td>
<td>16.2 (Lower Langhian) to 5.0 (Upper Messinian)</td>
<td>Intrusive and extrusive basalt</td>
</tr>
<tr>
<td>Tl</td>
<td>La Boca formation</td>
<td>Early Miocene</td>
<td>25.2 (Lower Aquitanian) to 16.2 (Upper Burdigalian)</td>
<td>Siltstone, sandstone, tuff and limestone</td>
</tr>
<tr>
<td>Tlc</td>
<td>Las Cascadas formation</td>
<td>Early Miocene</td>
<td>25.2 (Lower Aquitanian) to 16.2 (Upper Burdigalian)</td>
<td>Agglomerate and tuffaceous silstone, tuff, and foraminiferal limestone</td>
</tr>
<tr>
<td>Tcm</td>
<td>Caimiito formation</td>
<td>Late Oligocene</td>
<td>36 (Lower Rupelian) to 25.2 (Upper Chattan)</td>
<td>Tuffaceous sandstone, tuffaceous silstone, tuff, and foraminiferal limestone</td>
</tr>
<tr>
<td>Tbo</td>
<td>Bohio formation</td>
<td>Early to Late Oligocene</td>
<td>36 (Lower Rupelian) to 25.2 (Upper Chattan)</td>
<td>Conglomerate, principally basaltic and graywacke sandstone</td>
</tr>
<tr>
<td>Tgo</td>
<td>Gatuncillo formation</td>
<td>Middle to Late Eocene</td>
<td>54 (Lower Ypresian) to 36 (Upper Priabonian)</td>
<td>Mudstone, siltstone, quartz sandstone, algal and foraminiferal limestone</td>
</tr>
<tr>
<td>pT</td>
<td>Pre-Tertiary basalt</td>
<td>Pre-Tertiary</td>
<td>> 66.5 (Mesozoic)</td>
<td>Altered basaltic and andesitic lavas and tuff, includes dioritic and dactitic intrusive rocks</td>
</tr>
</tbody>
</table>

- Floristic composition across a climatic gradient in a neotropical lowland forest - 557
Results

Patterns of diversity

We found high levels of floristic diversity with a rapid turnover of species across the lowland landscape. The 54 plots contained 22736 individual trees from 824 species. On average, each plot contained 421 stems and 79 species. All forest plots show high diversity by multiple measures, including Fisher’s H and the Shannon diversity index H'. In this study area, neither of diversity indices has a simple relationship with precipitation or other available environmental variables. The tropical moist forest and pre-montane forest life zones have contrasting floristic assemblages, and Table 3 illustrates the absence of overlap between the ten most frequent species found in each life zone. Species ranked in Table 4 illustrate the diversity of species composition found within three large sites in the tropical moist forest life zone.

Watershed floristic patterns

NMDS ordination produced a dense cluster of plots stretching from the dry sites at Cocoli to the wet Caribbean plots at Fort Sherman (Fig. 2), and a more diffuse group containing the outer watershed plots stretched along a second axis. These floristic divisions are supported by patterns of species accumulation within the watershed. Abrupt increases in species accumulation rates are known to occur when crossing ecotones and boundaries between contrasting floristic areas. The 50-ha forest dynamics plot on Barro Colorado Island contains 229 species of trees 10 cm DBH, and the addition of 39 ha along the Canal brings the total to 417 species. A further addition of only 2.5 ha (one 1-ha plot and eight 0.32-ha plots) from the outer watershed plots increases the total to 824 species (i.e. 824 species on 41 ha). The restricted local ranges observed for many species further support this relationship (Fig. 3). Species found in the outer watershed plots were not observed in the tropical moist forest.

Table 3. Most frequently occurring species within plots in the tropical moist forest and premontane forest life zones (S = Percent Occupancy in 45 plots within the life zone).

<table>
<thead>
<tr>
<th>Rank</th>
<th>Family</th>
<th>Species</th>
<th>S (%)</th>
<th>Total stems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Burseraceae</td>
<td>Protium tenuifolium</td>
<td>84</td>
<td>355</td>
</tr>
<tr>
<td>2</td>
<td>Myristicaceae</td>
<td>Virola sebifera</td>
<td>84</td>
<td>415</td>
</tr>
<tr>
<td>3</td>
<td>Arecaceae</td>
<td>Oenocarpus mapora</td>
<td>82</td>
<td>614</td>
</tr>
<tr>
<td>4</td>
<td>Meliaceae</td>
<td>Trichilia tiberculata</td>
<td>73</td>
<td>574</td>
</tr>
<tr>
<td>5</td>
<td>Olacaceae</td>
<td>Heisteria concinna</td>
<td>71</td>
<td>379</td>
</tr>
<tr>
<td>6</td>
<td>Tiliaceae</td>
<td>Luehea semanell</td>
<td>69</td>
<td>161</td>
</tr>
<tr>
<td>7</td>
<td>Flacourtiae</td>
<td>Casearia sylvestris</td>
<td>67</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>Araliaceae</td>
<td>Dendropanax arboreus</td>
<td>67</td>
<td>158</td>
</tr>
<tr>
<td>9</td>
<td>Rubiaceae</td>
<td>Aloeis blackiana</td>
<td>64</td>
<td>466</td>
</tr>
<tr>
<td>10</td>
<td>Arecaceae</td>
<td>Asirocaryum standleyanum</td>
<td>64</td>
<td>407</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>S (%)</th>
<th>Total stems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burseraceae</td>
<td>Casapousa elliptica</td>
<td>89</td>
<td>41</td>
</tr>
<tr>
<td>Arecaceae</td>
<td>Socratea exorrhiza</td>
<td>89</td>
<td>88</td>
</tr>
<tr>
<td>Clusiaceae</td>
<td>Tomovita longifolia</td>
<td>89</td>
<td>28</td>
</tr>
<tr>
<td>Meliaceae</td>
<td>Carapa guianensis</td>
<td>78</td>
<td>48</td>
</tr>
<tr>
<td>Araliaceae</td>
<td>Dendropanax arboreus</td>
<td>78</td>
<td>30</td>
</tr>
<tr>
<td>Lecythidaceae</td>
<td>Gustavia dubia</td>
<td>67</td>
<td>15</td>
</tr>
<tr>
<td>Arecaceae</td>
<td>Inrietae deltaoides</td>
<td>67</td>
<td>70</td>
</tr>
<tr>
<td>Cecropiaceae</td>
<td>Pouriouma bicolor</td>
<td>67</td>
<td>16</td>
</tr>
<tr>
<td>Burseraceae</td>
<td>Protium sp.</td>
<td>67</td>
<td>21</td>
</tr>
<tr>
<td>Clusiaceae</td>
<td>Symphonia globulifera</td>
<td>67</td>
<td>12</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>Tapirina guianensis</td>
<td>67</td>
<td>16</td>
</tr>
<tr>
<td>Arecaceae</td>
<td>Welfia regia</td>
<td>67</td>
<td>38</td>
</tr>
</tbody>
</table>
dense set of plots closer to the Canal. This contrasts with the situation along the Canal where, despite the lack of any omnipresent species, many trees occur in multiple plots across the climatic gradient.

Gradient analysis

A clear pattern of floristic compositions was identified through indirect gradient analysis. The strongest gradient appears to run between Fort Sherman and Cocoli, paralleling the regional trends in precipitation and dry season severity. The first axis of a 45 plot, centered NMDS solution was best fit by median annual precipitation (p-value < 0.001, $R^2 = 0.62, n = 45$) (Fig. 4). Substituting the alternative dry-season precipitation index (cumulative May precipitation) resulted in a slightly worse fit to the NMDS scores (p-value < 0.001, $R^2 = 0.53, n = 45$). This relationship was also significant in a Mantel test. A randomized Monte Carlo method rejected the null hypothesis (no effect by precipitation) at a level of alpha = 0.95 (Standardized Mantel statistic, $r = 0.879, p = 0.001$). Consequently, the test supports a strong, positive association between differences in precipitation and floristic distance as measured by the

Fig. 2. Non-metric Multidimensional Distance Scaling of 54 1-ha monitoring plots in the Panama Canal watershed. Symbols for reference locations as in Fig. 1. Plots m33 - m39 are in the premontance wet forest/tropical montane wet forest. All plots along the primary wet-dry axis are included in the tropical moist forest life zone (Holdridge & Budowski 1959).

Fig. 3. Percentage of species restricted to a given floristic area within the Canal watershed. In this case, species with restricted ranges occur only in the indicated area and nowhere else in the study watershed. The local distribution of these species may not be indicative of their regional or global distribution. Locations are identified in Fig. 1.
Sørensen similarity measure. As geographic distance and precipitation are closely linked in this landscape, the Mantel test cannot decouple their effects (see Spatial Structure below). A Mantel test comparing geographic distance and annual precipitation distance indicated a very strong positive association (Standardized Mantel statistic, $r = 0.878$, $p = 0.001$).

First axis DCA scores indicated the same strong indirect gradient identified by NMDS (Fig. 5). DCA provided additional information about the strength of the derived axes. DCA was used to estimate the strength of the floristic gradient across levels of taxonomic organization. At the species level, DCA returned a first axis eigenvalue of 0.70 (Fig. 6). Aggregating species to genera produced a weaker indirect gradient (Axis 1, eigenvalue 0.59; Fig. 6). Families provided the weakest response, and the DCA generated only a diffuse cloud of points with limited gradient structure (Axis 1, eigenvalue: 0.34; Fig. 7). Mantel tests were again applied to examine the correlation between geographic distance and similarity, this time across levels of floristic organization. Mantel’s asymptotic approximation methods indicated significant correlations at the alpha = 0.05 level for only the species scores. The genera and family-level aggregations did not have significant spatial structure (Table 5). This interesting pattern cannot be fully decoupled from species-level gradient responses. Most genera (165 out of a total of 231 genera) and some families (23 families out of a total of 69 families) were represented by only a single species. Taxonomic aggregation has no impact on these taxa, and species-level responses continue to contribute to the higher-level ordinations. The vestigial gradient structure apparent in the genera and, especially family-level, ordinations may be produced primarily by these monotypic taxa.

Spatial structure

The Mantel tests indicate that in aggregate, the lowland forest is strongly spatially structured. We can apply a different set of tools to investigate these patterns in more detail. Scatter plots comparing floristic similarity and geographic distance indicate that forest composition changes very quickly as one moves away from any given plot (Fig. 8).

Table 4. Comparison of the most abundant species within three well-sampled areas in the tropical moist forest life zone.

<table>
<thead>
<tr>
<th>Rank</th>
<th>BCI</th>
<th>Coclí</th>
<th>Fort Sherman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gustavia superba</td>
<td>Trichilia pleuana</td>
<td>Socratea esorhiza</td>
</tr>
<tr>
<td>2</td>
<td>Trichilia tuberculata</td>
<td>Anacardium excelsum</td>
<td>Tacanuma copada</td>
</tr>
<tr>
<td>3</td>
<td>Ateis blackiana</td>
<td>Calycoptilum sandulatum</td>
<td>Tapirita guineensis</td>
</tr>
<tr>
<td>4</td>
<td>Farameea occidentalis</td>
<td>Antirhea trichantha</td>
<td>Brosimum utile</td>
</tr>
<tr>
<td>5</td>
<td>Psalantis armata</td>
<td>Guarea glabra</td>
<td>Inga petzittera</td>
</tr>
<tr>
<td>6</td>
<td>Virola sehifira</td>
<td>Protium tenuifolium</td>
<td>Toovomita longifolia</td>
</tr>
<tr>
<td>7</td>
<td>Quararibea asteroide</td>
<td>Serirexia simplex var.</td>
<td>Pereaebus xanthoclyma</td>
</tr>
<tr>
<td>8</td>
<td>Onecaropoa mapora</td>
<td>Ectronus graveolens</td>
<td>Marilia laevis</td>
</tr>
<tr>
<td>9</td>
<td>Hirtella triandra</td>
<td>Brosimum aliciustrum</td>
<td>Protium panamense</td>
</tr>
<tr>
<td>10</td>
<td>Adelia triloba</td>
<td>Cavaniellea plataniifolia</td>
<td>Mitrobia minatitofla</td>
</tr>
</tbody>
</table>
Fig. 5. Detrended Correspondence Analysis for 45 lowland plots and 417 species. Eigenvalue for Axis 1 = 0.7027.

Fig. 6. Detrended Correspondence Analysis of 45 plots based on 231 genera. Eigenvalue for Axis 1 = 0.5925.

Fig. 7. Detrended Correspondence Analysis of 45 plots based on 68 families. Eigenvalue for Axis 1 = 0.3404.
However, these simple figures are partially confounded by the fact that climatic conditions and geographic distance are highly correlated across the lowland landscape (e.g., plots far apart tend to have dissimilar climate). Fig. 9a illustrates a semi-variogram for first-axis NMDS ordination scores. The data climb in a linear fashion and no sill is visible. This pattern suggests that the data are dominated by a global trend across the samples. This obviously supports the results of the gradient analysis showing the overriding influence of the precipitation gradient and its correlates. We can remove this global trend by using the regression model (Eq. 1) fitted to the first-axis NMDS scores. After subtracting the predicted model values, we then evaluated the spatial structure of the model residuals. The residual semi-variogram in Fig. 9b presents a different picture of the landscape: a sill appears in the variogram at ca. 5-km distance. This indicates local spatial autocorrelation in species composition extending out 5 km around sampled locations. This autocorrelation manifests itself as local-scale variations in species composition superimposed on landscape-scale patterns dominated by climatic and geologic factors.

Discussion

Regional forest classification

In the tropics, difficult plant taxonomy and logistical considerations have frequently led to the use of physiognomic and climatic parameters for the classification of tropical vegetation (Holdridge et al. 1971; Weishampel et al. 1990; Mackey 1993, 1994). These systems often do not explicitly consider the species composition of various forest types, and their applicability to botanical investigations is an area of research. Conservation practice, including international conventions for the protection of biodiversity, typically emphasize the protection of individual species. Consequently, research must assist in linking regional physiognomic assessments (e.g., based on remote sensing or climatic parameters) to species-level biology. This study indicates that established bioclimatic Life Zones (Holdridge & Budowski 1959) adequately describe major subdivisions in the flora of lowland Panama. However, the Holdridge Life Zones have minimal provisions for accommodating continuous change within units. As such, they mask intra-unit variability, and consequently, forest composition along the Panama Canal. This investigation indicates the positive aspects of Life Zone classification at regional scales, while simultaneously highlighting its inadequacy for finer scales of analysis and resource management.

Controls on lowland forest composition

The data presented here strongly suggest the dominance of environmental controls as drivers of species assemblage. While this study indicated the importance

Table 5. Mantel scores and statistics for three levels of taxonomic aggregation along the trans-isthmian gradient. The test compares a similarity matrix with a matrix of geographic distances. In this case, the null hypothesis is that distance does not predict similarity. This is rejected for species, but not genera or families.

<table>
<thead>
<tr>
<th>Level of aggregation</th>
<th>Mantel’s asymptotic approximation</th>
<th>Equivalent t-statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>0.098</td>
<td>2.268</td>
<td>0.024</td>
</tr>
<tr>
<td>Genera</td>
<td>0.084</td>
<td>1.825</td>
<td>0.068</td>
</tr>
<tr>
<td>Family</td>
<td>0.862</td>
<td>0.862</td>
<td>0.389</td>
</tr>
</tbody>
</table>

Fig. 8. Scatter plot analysis indicating the decay of floristic similarity with distance.
of distance affects over relatively short distances (< 5 km), only precipitation and geology were useful for predicting species-level floristic variation at broader scales. Two specific observations reinforce these conclusions about the organizing role of regional watershed environmental gradients. Plot L1 is located on the Caribbean side of the isthmus on shallow, presumably droughty, limestone soils. The flora sampled at L1 is most similar to plots 50 km away on the drier, Pacific side of the isthmus, while the surrounding Fort Sherman forest is more closely allied with the wettest sites on the Santa Rita ridge. The L1 example provides an instance of a relatively dry forest type occurring in an area dominated by wet forest assemblages. Plots m25 and m26 reverse this example by illustrating the presence of floristically wet forest in an area nominally associated with a relatively dry species assemblage. Despite being surrounded by typical mid-isthmus forest at Pipeline Road, and Barro Colorado Island, these plots support tree assemblages most similar to Fort Sherman on the wet Caribbean coast. Plots m25 and m26 straddle ridge and summit hillslope positions, and nothing in the local terrain indicate that they receive significantly more moisture than the nearby Pipeline Road forest. Plots m25 and m26 do share one important attribute with floristically similar plots on Fort Sherman: acidic soils. The soils underlying plot m25 and m26 have pH values much closer to the Fort Sherman plots (~ pH 4.6) than the nearby BCI and Pipeline Road plots (~ pH 5.7). These unreplicated observations suggest that the forest composition may be sensitive to soil factors.
correlated with soil acidity rather than simply precipitation. Both sets of observations suggest that dispersal limitation is a secondary driver of floristic organization at the landscape scale.

These examples could be considered in light of a pair of biogeographic hypotheses. The dry forest at L1 or the wet forest at plots 25 and 26 may be refugial distributions. For example, at some point in the past the entire region may have been suitable for the drier forest assemblage. Subsequent changes in climate may have forced remnants of the biota into suitable, but restricted, microsites. If L1 is actually a dry forest refugia, one could hypothesize that the modern Pacific coast forest once covered the entire isthmus during drier climatic conditions. The argument would follow that changes in climate lead to increased precipitation and the expansion of a wet forest type that has replaced the drier forest. The Pacific coast forest-type survives in the L1 micro-site conditions that are inhospitable to the now dominant Caribbean forest-type. Differences between L1 and the modern Pacific coast forest sampled at Cocoli could be explained with evolutionary phenomena such as founder effects, genetic drift, local selective pressures, or simply sampling effects between diverse plots with limited replication. If the refugial hypothesis holds, we must then imagine that the climate has oscillated from wet to dry in the past, allowing first the Pacific forest elements to spread north, then the Atlantic forest elements to spread south. Alternatively, it is possible that the L1 forest was established under relatively constant climatic conditions by long distance dispersal from a source forest on the Pacific side. Differences between the Cocoli plots and L1 forest might then be explained as artifacts from sampling among trees with different dispersal vectors and colonization abilities. Similar arguments could be applied to the patch of wet forest at plots 25 and 26.

Initially, the dispersal hypothesis appears unlikely given contemporary characterizations of the dispersal abilities of lowland tree species (Harms 1997; Hubbell et al. 1999). However, the situation is complicated by a diverse landscape mosaic that provides many possible locations for dry forest refugia (e.g., outcrops of limestone or other well-drained substrates), and consequently, might facilitate dispersal through a series of ‘jumps’. The climate-shift hypothesis may be supported by palaeoclimatic evidence (Bush & Colinvaux 1990; Haberle & Maslin 1999). Three periods of recent large-scale floristic reorganization have been identified in the Panamanian lowland: 14 300-13 500 yr BP, 11 000-10 300 yr BP, and < 10 000 yr BP – human disturbance during the Holocene (Bush & Colinvaux 1990). The authors also note a conspicuous ‘dry phase’ between ca. 8200-5500 yr BP. These records were taken from lowland sites of equivalent elevation, and the authors indicate that their records show at least regional synchronization between Panama and Costa Rica.

Recent ecological studies (Condit et al. 1992, 1995b, 1996a, b) indicate that the Panamanian flora, as represented by the forest dynamics plot on BCI, is tightly coupled to decadal-scale climatic forcing. Condit et al. (1995) have examined population trends for 205 species of trees and shrubs within the 50-ha BCI plot and found that they respond dramatically to even short-term climatic disturbances (e.g. the 1982-1983 El Niño drought). They note that a 25-yr drying trend on BCI is having clear implications for forest composition, and Condit et al. (1992) concluded that BCI is having clear implications for forest composition, and Condit et al. (1992) concluded that BCI is having clear implications for forest composition, and Condit et al. (1992) concluded that BCI is having clear implications for forest composition, and Condit et al. (1992) concluded that BCI is having clear implications for forest composition.

The limestone outcrops in this landscape provide an exceptional opportunity for future research. In fact, they may provide a naturally replicated set of dry micro-sites across this precipitation gradient. These patches are typically more deciduous than the surrounding forest, and they can often be identified through aerial photography taken during the dry season. A future experimental design might examine stand structure and recruitment in these isolated forests and attempt to evaluate the relative controls of dispersal and climate in determining their composition.

Maintenance of biodiversity across spatial scales

A significant challenge confronting ecologists is the integration of mechanisms acting at multiple scales. Studies at BCI suggest that at scales of < 1 km, random forces play a large role in determining species composition, through dispersal limitation (Harms 1997; Hubbell et al. 1999). Our spatial analysis extends this somewhat by indicating that dispersal limitation plays an important role in structuring species composition over distances less than 5 km. However, data from this study demonstrate that the Panamanian forest is not randomly assembled at the larger scales, and to the contrary, it has clear patterns of spatial organization. The strong correlation between precipitation, geology, and floristic composition suggest that dispersal limitation and random processes are overlain on a landscape pattern primarily created by environmental gradients. However, these environmental correlations are not perfect, and chance events can break down these patterns and leave some species with peculiar and inexplicable distributions. In conclusion, it appears that the high levels of beta-diversity observed in lowland Panama are generated by a combination of fluctuating climate and randomly expressed local processes interacting across a complex physical landscape.
Acknowledgements. The authors would like to acknowledge the support of the U.S. Agency for International Development, through the Panama Canal Watershed Monitoring Project, especially R. Ibañez, M. Somoza, and I. Tejada, and the Smithsonian Tropical Research Institute. C.R. Pyke was supported through the National Science Foundation-funded Research Training Group in Spatial Ecology administered by the Departments of Ecology, Evolution, and Marine Biology and Geography at the University of California, Santa Barbara. We thank F. Davis, O. Chadwick, and D. Stoms for their comments and constructive criticism.

References

Condit, R. 1998. *Field guide for tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots*. R.G. Landes Co.

Holdridge, L.R. & Budowski, G. 1959. *Mapa ecologico de Panama (1:1,000,000)*. Interamerican Institute of Agricultural Science, Turrialba.

Mackey, B.G. 1994. Predicting the potential distribution of
rain-forest structural characteristics. *J. Veg. Sci.* 5: 43-54.

Received 29 June 2000;
Revision received 22 February 2001;
Final revision received 13 April 2001;
Accepted 11 May 2001.
Coordinating Editor: J. Denslow.