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Summary

1. Abundance estimation is a pervasive goal in ecology. The rate of detection by motion-sensitive

camera traps can, in principle, provide information on the abundance of many species of terrestrial

vertebrates that are otherwise difficult to survey. The random encounter model (REM, Rowcliffe

et al. 2008) provides a means estimating abundance from camera trap rate but requires camera

sensitivity to be quantified.

2. Here, we develop a method to estimate the area effectively monitored by cameras, which is one

of the most important codeterminants of detection rate. Our method borrows from distance

sampling theory, applying detection functionmodels to data on the position (distance and angle rel-

ative to the camera) where the animals are first detected. Testing the reliability of this approach

through simulation, we find that bias depends on the effective detection angle assumed but was

generally low at less than 5% for realistic angles typical of camera traps.

3. We adapted standard detection functions to allow for the possibility of smaller animals passing

beneath the field of view close to the camera, resulting in reduced detection probability within that

zone. Using a further simulation to test this approach, we find that detection distance can be

estimated with little or no bias if detection probability is certain for at least some distance from the

camera.

4. Applying this method to a 1-year camera trapping data set from Barro Colorado Island,

Panama, we show that effective detection distance is related strongly positively to species bodymass

and weakly negatively to species average speed of movement. There was also a strong seasonal

effect, with shorter detection distance during the wet season. Effective detection angle is related

more weakly to species body mass, and again strongly to season, with a wider angle in the wet

season.

5. This method represents an important step towards practical application of the REM, including

abundance estimation for relatively small (<1 kg) species.

Key-words: abundance estimation, animal density, camera detection zone, detection prob-

ability, passive infrared motion sensor, Random Encounter Model

Introduction

Camera traps are noninvasive survey devices that record ani-

mals as they pass, typically triggered by a passive infrared

motion sensor. They are rapidly becoming one of the most

important tools in the conservation and ecological studies of

terrestrial vertebrates (Rowcliffe & Carbone 2008) and have

been used to estimate the abundance of individually marked

species (e.g. Karanth et al. 2006; Linkie et al. 2006; Soisalo &

Cavalcanti 2006), for multispecies surveys and species richness

inventories (e.g. Silveira, Jacomo, & Diniz-Filho 2003; Tobler

et al. 2008), and to estimate species’ occupancy (e.g. Linkie

et al. 2007).

In addition, the rate of detection of a species by camera traps

(i.e. the raw number of records per unit time) may correlate

well with animal density (Carbone et al. 2001; Kelly 2008;

Rovero & Marshall 2009), suggesting a potential to use trap

rate as an index of abundance. However, this approach has

been discouraged by some because of the possibility for
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variables other than abundance to influence trap rate (Jenn-

elle, Runge, & MacKenzie 2002; O’Brien & Kinnaird 2008).

In particular, Rowcliffe et al. (2008) identified that the size

of the zone within which animals are detected by cameras’

infrared sensors is critical. Recent work has shown that

there are a number of factors that might influence this.

First, camera trap sensitivity varies between animal species.

In particular, smaller-bodied animals are less likely to be

sensed (Kelly 2008; Kelly & Holub 2008; Tobler et al.

2008). Sensitivity can also vary between camera models

(Kelly & Holub 2008) and environmental conditions (no

published sources that we are currently aware of). It is also

possible that a species’ typical behaviour may influence the

probability of being photographed. For example, faster-

moving species may be less likely to be recorded, although

as far as we know, this possibility has not been tested.

Behaviour also affects trap rates if cameras are nonrandom-

ly placed, in which case, changes in tendency to frequent

the targeted sites, such as trails, because of factors such as

human disturbance, might confound any abundance signal

in trap rates. However, this bias is avoided by random

placement of cameras, and it is in this context that the

methods presented here are developed.

All of the aforementioned biases have been cited as reasons

why trapping rates are unreliable as indicators of abundance.

However, if random camera placement is used, and if it is pos-

sible to quantify sensitivity in relation to a range of covariates

(e.g. climate, habitat, species and camera characteristics), these

sources of bias could be controlled for. In principle, this would

allow camera trapping rates to be interpreted as abundance

indices with greater confidence.More specifically, the ability to

measure camera trap detection zone dimensions for specific

survey conditions is a critical step in the application of the ran-

dom encounter model for estimating animal density (REM,

Rowcliffe et al. 2008).

In this paper, we develop a method for estimating species-

and survey-specific dimensions of the camera trap detection

zone. Detection probability is a function of animal position

relative to the camera; animals are progressively less likely to

be detected as they pass further from the sensor’s core field of

view, while if cameras are set high relative to the size of the ani-

mal, those passing close to the camera may be missed by pass-

ing below the field of view. Our method borrows from distance

sampling theory (Buckland et al. 2001) to account for these

complexities, using standard detection functions when there is

no reduction in detectability close to the camera, but otherwise

using an adapted detection function to account for this pro-

cess. We use simulated data to validate the performance of this

approach. We then apply the model to camera trapping data

from the tropical moist forest of Barro Colorado Island,

Panama, and show how detection zone dimensions vary with

species and environmental variables. We test three hypotheses:

(i) larger animals are more likely to trigger cameras than are

smaller animals; (ii) animals that move past cameras more

slowly are more likely to trigger them than are animals that

move faster; and (iii) the sensitivity of camera traps varies

seasonally with environmental conditions.

Study site: Barro Colorado Island

Camera traps were deployed on Barro Colorado Island (BCI,

9�9¢N, 79�51¢W),Republic of Panama, a semi-deciduousmoist

tropical forest on a former hilltop that was isolated from the

mainland by the formation of Gatun Lake to complete the

Panama Canal. Roughly half of BCI is covered with old-

growth forest and roughly half with late-secondary forest of

ca. 90 years old. The climate is seasonal, with a distinct

4-month dry season (January–April) and 2600-mm average

annual rainfall (Leigh 1999). BCI has a fairly complete fauna

with mammal densities similar to much more remote sites

(Wright, Gompper, & De Leon 1994). The only large verte-

brate absent today is the white-lipped peccary (Tayassu pecari),

which was eliminated by poachers in the 1930s (Enders 1939

cited inWright, Hernandez, &Condit 2007).

Field data

Our field data come from 20 camera traps run for 1 year, from

February 2008 to February 2009 (Kays&Slauson 2008). Cam-

eras were placed at randomly selected locations in ten different

1-ha forest plots and moved approximately every 8 days for a

total of 6312 trap-nights at 789 locations, recording 17226 ani-

mal detections of 25 different species. We used Reconyx RC55

cameras that are triggered with a passive infrared motion sen-

sor and record a digital image, using an infrared flash at night.

The 1-ha plots were scattered across the secondary forest part

of BCI and varied widely in the abundance of large-seeded tree

species (Galvez, Kranstauber, & Kays 2009). Random points

within these plots were located by generating coordinates in a

computer and finding the corresponding locations in the field

with a GPS receiver (Garmin 60CSx). Cameras were mounted

on a small tree as close as possible to each randomly selected

location. All cameras were mounted around 20 cm off the

ground and angled to be parallel to the slope of the ground.

The view was maximised by aiming them in the most suitable

direction, considered to be one with less vegetation or slope

obstructing the view. To ensure random placement with

respect to animal movements, no bait or lure were used, nor

were attempts made to place cameras on game trails or

other features that might have increased capture rates. For

every motion trigger event, cameras made 10 low-resolution

(1 megapixel) pictures at a frame rate of approximately 1 s)1

and could immediately be triggered again without delay, essen-

tially producing a short video clip of animals moving in front

of the camera.

To record the position of an animal when it first triggered

the camera trap, we examined a subset of the photographs in

the field before removing the camera, with the aid of a portable

card viewer.We noted the position of the animal that triggered

the camera in the first frame relative to nearby landmarks such

as trees and rocks and then simply measured the distance and

angle to that spot from the camera trap with measuring tape

and compass. This yielded 1555 records of animal positions on

first detection for 19 species. This subset was chosen systemati-

cally, taking measurements for the first three records of each
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species at each camera deployment, thus avoiding potential

bias in tending tomeasure records that were more obvious and

therefore relatively close to the camera. The analyses below

concentrate on nine species for which at least 40 records of

position on first detection were available (Table 1). We also

measured the speed of animals moving in front of the camera

from 2231 video clips. These measurements were also taken in

the field before removing a camera, by recording the length of

each animal’s path through the environment with a measuring

tape and dividing this distance by the time between first and

last images recording the animal. The geometric mean of these

speed measures was then used to define species average speed

(J. M. Rowcliffe et al. unpublished data). Species average

body mass values were taken from BCI animal capture data

(R. Kays unpublished data) where possible, otherwise Em-

mons & Freer (1990) or Reid (1997). Key traits and sample

sizes for the nine core species are summarised in Table 1.

Detection sensitivity model

The distribution of photographed animal positions relative to

the camera arises from the interaction between their pattern of

approach to the camera and the rapidity with which the cam-

era and sensor react to their presence. More specifically, we

suppose that observed positions depend on the pattern of vari-

ation in instantaneous risk of triggering the sensor across the

detection zone, the delay between sensor triggering and picture

recording and the distributions of directions and speeds at

which animals approach. The motivation for this work is to

provide a means of estimating detection zone dimensions for

application to REM estimation of abundance (Rowcliffe et al.

2008), which defines the detection zone as a sector with radius r

and angle h (Fig. 1a). However, the process just outlined does

not readily lend itself to the identification of these parameters.

While it should be possible in principle to fit a mechanistic

model to animal position data to estimate the parameters of an

underlying landscape of instantaneous risk of triggering, it is

not clear how effective detection radius and angle values could

be derived from such amodel.

An alternative way to think about the process is that abso-

lute probability of detection declines with linear and angular

distance from the camera, allowing the effective detection zone

parameters to be estimated by fitting classic distance sampling

detection models (Buckland et al. 2001) to distance and angle

data. This could make sense if the position data arise from

allowing the camera to re-trigger immediately following each

record, so that each image represents an independent triggering

event. However, this study followed common current practice

in setting cameras to take a series of pictures automatically fol-

lowing a trigger, and we therefore only have meaningful infor-

mation on the position of animals on first capture for each

passage. If cameras had a 360 degree field of view, all positions

on first capture would likely be clustered around the outer

boundary of the detection zone, with none closer in; applying a

distance-based approach in this case would clearly give biased

results andwould likely fail anyway owing to the inappropriate

data distribution. However, given that camera detection zones

are roughly triangular, with the camera at one corner, animals

can approach the camera closely before being detected, and it

seems intuitively possible that a distance-based approach could

provide reasonably unbiased estimates in practice. In this sec-

tion, we first examine field data to understand the distribution

of angular and radial distances from camera on first record

and their relationship to one another; we then develop

distance-based algorithms for estimating detection zone

dimensions from field data. In the following section, we test

the reliability of the approach through simulation.

A critical first step is to determine whether r and h are

independent, or alternatively whether they are correlated, per-

haps because the outer edges of the detection zone become

weaker at greater distance. Looking at records for agouti, the

species with the most records in the BCI data set, we find that

there is indeed a negative correlation between distance and

angle, resulting from a relative lack of records with both large

radius and large angle (Fig. 1b,c). However, this correlation

is weak and driven by a small number of extreme records.

Removing the top 5% of each measure (open symbols in

Fig. 1c) leaves a much weaker and nonsignificant correlation.

Given that such extreme records are generally considered

lacking in information and are frequently truncated in dis-

tance analyses, we conclude that the correlation is not impor-

tant in practice.

Table 1. Summary of key traits and sample sizes for the nine Panamanian forest mammal species with at least 40 measurements of position on

first detection. Sample sizes are given for both records of position on first trigger and speed of movement. For brevity, the abbreviated common

names given in brackets are used hereafter

Species

Body mass

(kg)

Mean speed

(cm s)1)

Sample sizes

Position Speed

Mouse unknown species (mouse) 0Æ1 12Æ4 43 42

Central American spiny rat Proechimys semispinosus (rat) 0Æ4 14Æ1 109 135

Red-tailed squirrel Sciurus granatensis (squirrel) 0Æ4 14Æ6 55 68

Central American agouti Dasyprocta punctata (agouti) 3Æ5 16Æ0 724 980

White-nosed coati, Nasua narica (coati) 4Æ0 19Æ3 57 129

Paca Agouti paca (paca) 8Æ0 19Æ3 137 196

Ocelot Leopardus pardalis (ocelot) 11Æ9 30Æ3 72 93

Red brocket deer Mazama temama (brocket) 22Æ8 16Æ4 81 184

Collared peccary Tayassu tajacu (peccary) 25Æ2 16Æ7 114 272
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Agoutis most often trigger the camera when they are close to

the camera and near to the centre of its angular field of view,

with gradual declines in frequency with increasing distance and

angle (Fig. 1b). Our detection zone model therefore assumes

that sensitivity is greatest close to the camera and near the cen-

tre of its field of view and that the probability of the camera

reacting to an animal’s presence declines monotonically with

both distance and angle. Furthermore, following the weak cor-

relation observed between distance and angle, we assume that

their effects on detectability are independent of one another.

On this basis, declining detectability patterns can readily be

modelled using standard distance sampling theory (Buckland

et al. 2001), using a line transect model for the angle and a

point transect model for the distance. We explore the suitabil-

ity of two possible models for describing detection probability

as a function of distance or angle, namely half normal and haz-

ard rate, respectively:

aðyÞ ¼ exp
�y2
2a2

� �

aðyÞ ¼ 1� exp � a=yð Þcð Þ
eqn 1

where a(y) is the detection probability at distance or angle y, a
defines the width of the function, and c in the hazard model

defines its shape. We also explored the use of cosine series

expansion terms (Buckland et al. 2001) to give the functions

added flexibility.

A notable characteristic of the distribution of records is that

there are fewer than expected very close to the camera trap

(note the gap close to the origin in Fig. 1b). This may be either

because animals are unwilling or physically unable to pass very

close to the tree to which it is attached (most likely to be true

for larger animals) or because some animals are missed by

passing under the field of view (most likely to be true for smal-

ler animals). In the former case, animals are, in principle,

displaced away from the camera rather thanmissed altogether,

so a standard monotonically declining detection model can be

fitted to distance data without biasing the result, as long as dis-

placed animals are indeed detected. In the latter case, animals

that the model assumes will be recorded are in fact missed,

which will bias the result of a standard distance model. For at

least some species, we therefore need to adapt themodel of var-

iation in detectability with distance to account for this.

To do this, we introduce an additional component to the

detection function, describing increasing detectability with dis-

tance because of the decreasing probability of passing beneath

the field of view. Given that both camera heights within a sur-

vey and individual animal sizes within a population will vary,

the distance at which animals cease to pass beneath the camera

view will also be variable to some degree. Assuming that this

variation is approximately normally distributed, we propose

that detection probability because of this process b(r) can be

characterised by a sigmoid transition from certain nondetec-

tion to certain detection with increasing distance and use a

logistic model to describe this process:

bðrÞ ¼ 1

1þ exp d e� rð Þð Þ eqn 2

where d defines the rate of increase and e defines its inflection
point. The overall probability of detection is then given by the

declining detection function a(y) either alone or, if modelling

distances for species small enough to pass beneath the field of

view,multiplied by the increasing function b(r):

gðyÞ ¼ aðyÞ
bðrÞ y � r AND species small relative

1 otherwise

�

eqn 3

Hereafter, we termmodels with both increasing and decreasing

components in the detection function logistic mixture models.

Fig. 2 upper row illustrates four scenarios for overall detect-

ability as a function of distance, assuming a hazard rate model

for a(r): a) no animals missed close to the camera; b and c)

r
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Fig. 1. (a) Diagram of the model used to describe the detection zone (open sector) of a camera trap (filled square). The zone is described by radius

r and angle h. (b) The positions of all agoutis (n = 724) on first detection relative to the camera trap (located at co-ordinates 0,0). Note that this

plot is a half-sector because we assume that the zone is symmetric. (c) Plot of radial distance from camera (r) against angle (h) (Pearson correlation
coefficient for all records q = )0Æ128,P < 0Æ001; excluding the upper 5th percentile for eachmeasure (open points) q = )0Æ058,P = 0Æ13).
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some animals missed, but a broad or narrow region of certain

detectability at intermediate distance; and d) detectability less

than certain at all distances.

We fit models to distance and angle data by maximising the

likelihood:

LðyÞ ¼
Yn
i¼1

fðyiÞ eqn 4

where y is a data vector (either angles or distances) of length n

and f(yi) is the probability density for a given data point. For

angles, probability density is defined by a linear detection

process:

fðhÞ ¼ gðhÞR1
0

gðhÞdh
eqn 5

while for distances, probability density is defined by a radial

detection process:

fðrÞ ¼ rgðrÞR1
0

rgðrÞdr
eqn 6

Following standard distance sampling theory, the effective

detection angle or distance is estimated by finding the thresh-

old value at which the expected number missed within is equal

to the expected number detected beyond. Given threshold

angle hT, the number missed inside (N0) is proportional to the

area between the detection probability curve and g(h) = 1 for

h < hT, while the number seen beyond the threshold (N1) is

proportional to the area under the detection probability curve

for h > hT:

N0 / hT �
ZhT
0

gðhÞdh

N1 /
Z1

hT

gðhÞdh

eqn 7
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Fig. 2. Upper row: Detection probability as a function of distance, g(r), for four scenarios of detectability close to the camera: (a) certain; (b)

uncertain with a broad region of certain detection at intermediate distance; (c) uncertain with a narrow region of certain detection at intermediate

distance; (d) uncertain at all distances. Hazard logistic parameters used were a = 3, c = 5 and (for b-d) d = 10; increasing detectability thresh-

old parameters e were (b) 0Æ5; (c) 1Æ5; (d) 2Æ5. Lower row: The equivalent rg(r) curves for the radial distance model, illustrating the process for cal-

culating the effective detection distance. The diagonal line is defined by rg(r) = r; the light-shaded area is proportional to the number of animals

present but not detected (N0); the dark-shaded area is proportional to the number of animals both present and detected (N1). The vertical dividing

line lies at the point where these two areas are equal, giving the effective detection distance: (a) 3Æ64; (b) 3Æ6; (c) 3Æ31; (d) 2Æ66.

Quantifying camera trap sensitivity 5

� 2011 The Authors. Methods in Ecology and Evolution � 2011 British Ecological Society, Methods in Ecology and Evolution



The effective detection angle is estimated by finding the

value of hT that equalises N0 and N1. For distances, the same

principle is used, except that a radial detection process is used,

so

N0 /
r2T
2
�
ZrT
0

rgðrÞdr

N1 /
Z1

rT

rgðrÞdr

eqn 8

The estimation of effective detection distance is illustrated

for four scenarios in Fig. 2 lower row. We estimate the vari-

ance of the effective detection distance using the population

prediction interval approach, re-sampling model parameter

values from the estimated variance ⁄ covariance matrix of the

fitted detectionmodel.

We also expand the aforementioned models to allow the a
and e parameters in equations 1 and 2 to vary as a function of

one or more linear or categorical predictor variables. For

example, with k predictor variables:

a ¼ b0 þ b1x1 þ . . . bkxk eqn 9Þ

where b’s are parameter coefficients, estimated by maximising

the likelihood as described earlier.

Numerical methods implemented in R version 2.11.1 (R

Development Core Team 2010) were used for all optimisation

and integration problems, using package bbmle for likelihood

maximisation (Bolker 2010). The methods developed here can

be applied in R using the functions provided in Appendix S1.

If logistic mixture models are not required, models can also

readily be fitted in programDISTANCE (Thomas et al. 2010).

Performance of the detection function
approximation

The previous section outlined the motivation for using dis-

tance-based detection functions that approximate rather than

match the underlying detection process. In this section, we

examine the reliability of this approximation by quantifying

bias in density estimated using distance-based estimates of

effective detection zone dimensions. To do this, we simulate

randomised animal paths across a notional camera detection

zone, defined by fixed detection radius and angle, outside

which risk of capture is effectively zero. Each randomised pas-

sage is captured by the camera with probability defined by a

two-dimensional landscape of instantaneous risk within the

notional detection zone, which also determines the point at

which the sensor is triggered for those that are captured. Speed

ofmovement is random, drawn from a log-normal distribution

(based on speed measurements reported earlier), and we

assume a fixed delay between triggering and registration of the

image (a fundamental property of camera traps at present).

Full details of the simulation are provided in Appendix S2.

This approach generates random observations of position on

first record, from which effective detection distance and angle

can be estimated. Removing the numerator constant and vari-

ables held constant from Eqn. 4 in Rowcliffe et al. (2008), rela-

tive density can be calculated by:

D ¼ P

rð2þ hÞ

where r and h are detection zone dimensions as mentioned

earlier and P is the number of passages. Using the num-

ber of passages detected by the camera and the detection

zone dimensions estimated from these records provides an

estimate of relative density, while using the total number

of passages and fixed dimensions defining the notional

detection zone provides a benchmark against which bias

can be judged. Bootstrapping this process provides a

range of outcomes for a given underlying parameter set,

and we report the median percentage bias for a range of

widths of camera field of view.

We find that, over most of the range tested, bias is less than

5% (Fig. 3). In particular, subsequent results show estimated

effective detection angles in the field of between 15� and 25�,
depending on the species (Table 3); within this range, bias is

predicted to be between about )4% and 0%, arguably suffi-

ciently low bias to justify the approximation. Substantial posi-

tive bias at narrower angles appears to arise because the

detection zone approaches a one-dimensional beam, for which

a linear rather than radial detection function is more appropri-

ate for estimating effective distance. Radial detection functions

tended to fit the data poorly and underestimate effective dis-

tance in this case, leading to overestimated relative density.

Performance of the logistic mixture distance
model

To assess the ability of the logistic mixture model to estimate

effective detection distance accurately, we fitted models to sim-

ulated data sets and compared estimated effective detection

distances with those defined by the distribution used to gener-

ate the data. Based on the observation that hazard models fit
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Fig. 3. Percentage bias in relative density, based on detection zone

dimensions estimated using a distance-based approximation. Points

are themedian of 100 bootstrapped estimates on both axes.
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distance data from the field well, a hazard logistic model was

used both to simulate data sets (by generating random dis-

tances drawn from a known distribution) and to fit models to

these data. Sample sizes for each data set were either 40 or 200,

and three underlying detection functions were explored (those

illustrated in Figs 2b–d). This process was repeated 1000 times

for each sample size ⁄detection function combination, and the

distribution of estimated effective detection distances was com-

paredwith the known underlying value.

If themaximum underlying detection probability is less than

one, the shape of the probability density function holds no

information on the width of the detection plateau or the peak

detection probability and fitted models generally fail to give

the right answer; there is a tendency for outcomes to converge

on detection probability peaks of either one (thus overestimat-

ing effective detection distance) or approaching zero (dramati-

cally underestimating effective detection distance). This

dichotomy between extreme outcomes is greatest when sample

size is low (e = 2Æ5 and n = 40 in Fig. 4), although it is still

substantial when there are many observations (e = 2Æ5 and

n = 200 in Fig. 4). In the case where peak detection probabil-

ity is approximately 1, but the peak is a narrow point rather

than a broad plateau (e = 1Æ5 in Figs 2 and 4), the overall out-

come is approximately unbiased, but there is still a tendency

for models to converge on extremely low effective detection

distance estimates. When the underlying detection function

has a broad plateau of certain detection probability (e = 0Æ5 in
Figs 2 and 4), outcomes are again approximately unbiased,

although there remains a very small chance that the effective

detection distance will be massively underestimated if sample

size is small.

Detection function forms for tropical forest
mammals

Alternative detection functions were explored for the nine spe-

cies for which we obtained at least 40 records of position on

first encounter. Looking first at distance data, hazard rate

functions were generally better supported (Table 2). In five

species, hazard rate models had the lowest AIC score by at

least 3Æ7 points. The hazard rate model was notably strongly

supported in agouti, the species with by far the largest sample

(n = 753). In three of the four species for which half-normal

functions had the lowest AIC, the AIC differences from the

equivalent hazard models were relatively small (£3Æ7), and chi-

squared goodness-of-fit tests suggested no significant lack of fit

for hazard models. Only for paca was there strong support for

a half-normalmodel over hazard.However, it seems intuitively

sensible that there should be a shoulder of certain detectability

up to a certain distance, favouring a hazard model, and we see

no reason why the form of the sensitivity should vary between

species. We therefore use the hazard rate model in all further

analyses of distances.

Logistic mixture models (allowing reduced detectability

close to the camera) were best supported in five of the nine spe-

cies, all with body masses around 4 kg or lower. In contrast,

the remaining four species, for which monotonic models were

best supported, have body masses of 8 kg or greater. There is

thus good evidence that smaller animals were more likely to be

missed close to the camera. In none of the species did the addi-

tion of cosine expansion terms, allowing greater flexibility in

detection function, give a substantially better fit, and we there-

fore prefer the simple hazard rate function. Detection func-

tions for distance are illustrated in Fig. 5, showing hazard rate

model fits, with a logistic modifier where this was statistically

justified.

For data on angle at first detection, there was little difference

in fit between half-normal and hazard rate models, although

the formerwas generally slightly better supported; we therefore

concentrate on the half-normal models for further exploration

(Table 3). There was some support for the addition of cosine

expansion terms to models for angles. Comparing half-normal

models with between 0 and 2 cosine expansion terms, six of the

nine species had lowest AICs for models with two terms, nota-

bly including agouti (the species with the highest sample size),

for which the model with two expansion terms was strongly

supported, and the unexpanded half-normal model fitted

poorly. For the three species where the unexpandedmodel was

Table 2. Fits of four alternative detection models to empirical detection distance data for nine mammal species, ordered by bodymass.Model fit

is judged byAIC and a v2 goodness-of-fit test. For each species, the best-fitting model (that with the lowest AIC) is shaded and the corresponding

estimate for effective detection distance is provided

AIC (goodness-of-fit P)

Effective detection

distance (m) (SE)

Half-normal model Hazard model

Species Alone Logistic mix Alone Logistic mix

Mouse 69Æ0 (0Æ65) 63Æ3 (0Æ92) 68Æ3 (0Æ93) 65Æ6 (0Æ84) 1Æ29 (0Æ27)
Rat 217Æ1 (0Æ093) 209Æ6 (0Æ702) 207Æ2 (0Æ377) 201Æ5 (0Æ972) 1Æ47 (0Æ13)
Squirrel 137Æ3 (0Æ754) 132Æ8 (0Æ951) 136Æ9 (0Æ862) 133Æ8 (0Æ963) 1Æ88 (0Æ39)
Agouti 2194Æ2 (<0Æ001) 2164Æ9 (<0Æ001) 2165Æ9 (0Æ001) 2144Æ8 (0Æ16) 2Æ54 (0Æ10)
Coati 177Æ3 (0Æ01) 167Æ7 (0Æ07) 169Æ2 (0Æ17) 158Æ3 (0Æ36) 2Æ11 (0Æ50)
Paca 431Æ0 (0Æ83) 431Æ2 (0Æ74) 440Æ2 (0Æ02) 441Æ3 (0Æ01) 2Æ55 (0Æ17)
Ocelot 204Æ6 (0Æ71) 206Æ6 (0Æ48) 200Æ5 (0Æ95) 201Æ6 (0Æ92) 2Æ12 (0Æ31)
Brocket 297Æ0 (0Æ34) 299Æ6 (0Æ39) 293Æ2 (0Æ57) 296Æ0 (0Æ62) 3Æ64 (0Æ96)
Peccary 467Æ0 (0Æ757) 467Æ7 (0Æ566) 470Æ7 (0Æ433) 472Æ3 (0Æ228) 3Æ54 (0Æ44)
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best supported, the AIC difference from the two expansion

termmodel was nomore than 3Æ3. As in the case of the distance

models, we suggest that the underlying form of the detection

function is likely to be consistent across species and therefore

adopt the half-normal model with two expansion terms as our

standard form for modelling effective detection angles. Model

fits are illustrated in Fig. 6, showing a consistent pattern of

rapid decline in sensitivity away from the centre of the field of

view, but with this rate of decline ameliorating somewhat at

intermediate angles.

Correlates of sensitivity for tropical forest
mammals

Covariate models show strong support for variation between

species and seasons in both effective detection distance and

n = 40

ε  
= 

2·
5

n = 200

ε  
= 

1·
5

ε  
= 

0·
5

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

Fig. 4. Frequency distributions (bars) andmedians (dashed lines) of estimated effective detection distances from simulated data sets. Filled points

indicate the ‘true’ effective detection distance of the distribution used to generate the data. Sample sizes for each data set were either 40 (left

column) or 200 (right column). Three different threshold (e) parameters were used to generate data sets, defining the likelihood of animals being

missed close to the camera (organised by rows, low values indicate a low probability of being missed, see Fig 2b–d for the corresponding

detection functions).

Table 3. Fits of three alternative detection models to empirical detection angle data for nine mammal species, ordered by bodymass.Model fit is

judged by AIC and a v2 goodness-of-fit test. For each species, the best-fitting model (that with the lowest AIC) is shaded and the corresponding

estimate for effective detection angle is provided

AIC (goodness-of-fit P)

Effective detection

angle (degrees) (SE)

Number of cosine expansion terms

Species 0 1 2

Mouse )52Æ5 (0Æ63) )51Æ8 (0Æ7) )53Æ1 (0Æ99) 15Æ9 (6Æ4)
Rat )94Æ9 (0Æ14) )94Æ0 (0Æ17) )100Æ3 (0Æ9) 16Æ5 (3Æ4)
Squirrel )50Æ5 (0Æ15) )48Æ7 (0Æ17) )52Æ4 (0Æ53) 15Æ6 (4Æ89)
Agouti )753Æ0 (0Æ001) )751Æ8 (0Æ002) )768Æ2 (0Æ6) 17Æ6 (0Æ9)
Coati )73Æ7 (0Æ44) )72Æ3 (0Æ46) )72Æ0 (0Æ62) 18Æ9 (1Æ8)
Paca )128Æ7 (0Æ39) )127Æ2 (0Æ45) )129Æ5 (0Æ72) 17Æ5 (4Æ5)
Ocelot )64Æ7 (0Æ17) )63Æ2 (0Æ2) )65Æ3 (0Æ75) 16 (5Æ4)
Brocket )79Æ8 (0Æ73) )77Æ8 (0Æ73) )76Æ5 (0Æ71) 22Æ2 (1Æ8)
Peccary )90Æ2 (0Æ68) )89Æ0 (0Æ87) )88Æ6 (0Æ98) 25Æ8 (5Æ8)
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angle (Table 4). In the case of angle, variation between species

appears to be fully explained by body size (using species mass

instead of a categorical species covariate actually improves

model support), with no evidence for an effect of species aver-

age movement speed. However, for distance, while there was

some support for an effect of speed, models including both

bodymass and speedweremuch less well supported than those

including species identity instead, suggesting that there are

some species-specific elements of sensitivity that are not

captured by these two traits. There was also some support
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are in order of size reading by rows from top left.
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for a linear negative effect of bodymass on the threshold detec-

tion distance parameter e, although this effect was relatively

weak. This may be because the underlying process is not in fact

linear; it is reasonable to expect, and the analyses in Table 2

support this, that animals above a certain size do not have such

a detection threshold.
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Table 4. Linear model selection summaries for effective detection distance (EDD) and angle (EDA). Both model sets used all observations,

including species with fewer than 40 records. The detection function width parameter (a) was modelled as a function of covariates for both

distances and angles, while for distances, the threshold distance for detection (e) was alsomodelled as a function ofmass

Effective detection distance Effective detection angle

Covariates Covariates

Rank Width (a) Threshold (e) AIC DAIC Width (a) AIC DAIC

1 Species, season Mass 4308Æ6 0Æ0 Mass, season )1582Æ4 0Æ0
2 Species, season . 4311Æ7 3Æ1 Mass, speed, season )1580Æ4 2Æ0
3 Species Mass 4361Æ2 52Æ6 Species, season )1575Æ0 7Æ4
4 Mass, speed, season Mass 4383Æ6 75Æ0 Species )1435Æ5 146Æ9
5 Mass, speed Mass 4438Æ5 130Æ0 Mass )1433Æ7 148Æ7
6 Mass Mass 4443Æ2 134Æ6 Mass, speed )1432Æ7 149Æ7
7 Speed Mass 4576Æ5 268Æ0 . )1426Æ5 155Æ9
8 . Mass 4578Æ1 269Æ5 Speed )1425Æ2 157Æ1
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Fig. 7 illustrates the trends highlighted by the statistics in

Table 4. Effective detection distance increases strongly with

the size of the animal (Fig. 7a), with a 2Æ8-fold difference

between the maximum and minimum. The trend for distance

with average speed (Fig. 7b) is less clear, as there is relatively

little variation in speed and the effect is much weaker than

body mass; however, the predicted negative relationship is

clear across the four largest species, among which there is more

variation in average speed. Effective detection distance

becomes shorter as the season becomes wetter, appearing 70%

higher during the dry season than during the late wet season,

when rainfall is highest (Fig. 7c). Effective detection angle var-

ies less between species (only 50%higher from largest to small-

est), and the effect of body mass on angle is weaker than for

distance (Fig. 7d); there is no trend in angle with average speed

(Fig. 7e). Surprisingly, the effect of season on angle was in the

opposite direction to that on distance – effective detection

angles were wider in the wet season than in the dry (Fig. 7f).

This effect remained consistently clear evenwhen analyses were

repeated discarding the 5 or 10%most distant detections, indi-

cating that the result was not an artefact of the weak negative

correlation between distance and angle.

Discussion

There are two primary confounding effects that bias trapping

rate from randomly placed cameras as an index of abundance

(Rowcliffe et al. 2008): 1) interspecific variation in activity rate

and movement speed and 2) variation in the sensitivity of the

camera sensor. We address the former issue in a companion

analysis (J. M. Rowcliffe et al. unpublished data). In the cur-

rent paper, we provide methods to account for the latter, mak-

ing it possible to estimate the dimensions of camera detection

zones for very specific species and survey conditions. Because

these dimensions equate to those assumed in the random

encounter model of abundance (Rowcliffe et al. 2008), the

results of analyses using these methods can be used directly in

REManalyses to provide estimates of animal density.

Our analyses also confirm previous studies (Kelly & Holub

2008; Tobler et al. 2008) suggesting that there is substantial

variation in camera sensitivity between species and over time,

particularly in terms of effective detection distance. Trends in

sensitivity parameters were in the hypothesised directions

(higher detectability for larger and slower moving species),

although we currently have no plausible explanation for why

the detection zone becomes shorter but wider as the wet season

progresses. The reasons for this pattern, and whether it is a

general phenomenon or specific to the cameras used, need fur-

ther investigation. Variation in sensitivity between species and

seasons was substantial, particularly in terms of detection dis-

tance, emphasising again the need to estimate detection zone

parameters for the specific species and conditions experienced

during the survey if sensitivity is to be meaningfully controlled

for.
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The ability to quantify sensitivity also opens the possibility

of using camera traps to estimate the abundance ofmuch smal-

ler species than previously thought. Because of an assumption

(usually implicit) that detectability is too uncertain for smaller

species, few previous studies have considered using camera

traps to obtain data on them (but see Oliveira-Santos, Tortato,

& Graipel 2008; De Bondi et al. 2010). However, in this case,

we were able to obtain useable data on species as small as

100 g mice and make credible estimates of detection zone

dimensions, enabling the uncertainty in detectability to be

quantified and controlled for.

An important caveat regarding the use of this method for

very small species is that the logistic mixturemodel of variation

in detectability with distance is unreliable if detectability is

nowhere certain. This could be avoided by setting the cameras

as low as possible in cases where smaller species are to be tar-

geted and angling the camera slightly downwards, thus mini-

mising or eliminating the possibility of animals passing

beneath the field of view. This is different from the current

practice in which cameras are usually put at around 30 cm or

even higher (e.g. O’Brien, Kinnaird, & Wibisono 2003; Srbek-

Araujo & Chiarello 2005). Alternatively, where data on multi-

ple species are obtained, as in this case, a multispecies covariate

model with body mass covariate might be used to extrapolate

the detection function shape for smaller species to give an unbi-

ased estimate of effective detection distance, even where detec-

tion probability never approaches 1 in any part of the

detection zone. Further work is needed to evaluate the reliabil-

ity of this possible approach.

It should also be noted that detection probability might be

less than 1 throughout the detection zone if sensors are very

slow or unreliable in their responses. In this case, the methods

developed here would give biased estimates of effective detec-

tion zone dimensions. The cameras used in this study appeared

to have reliably rapid responses (c. 0Æ1 s), and we therefore

believe that the assumption of certain detectability at the heart

of the detection zone was reasonable; however, this may not be

the case for all camera models. Researchers should satisfy

themselves that their cameras are responding sufficiently reli-

ably to animals passing close by before using the logistic mix-

ture model. Controlled trials of camera responses to captive

animals of a similar size to those targeted in the field would be

a possible way to achieve this.

One further constraint is the effort required to gather the

position data required. This adds significant additional time

costs in the field, and we are therefore developing tools to

extract the necessary information by automated analysis of

images once downloaded (see Kays & Slauson 2008 for a preli-

minary description of this approach).
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