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Abstract 
 

The spatial arrangement of trees in a tropical forest reflects the interplay between 

aggregating processes, like dispersal limitation, and negative feedback that induces 

effective repulsion among individuals.  Monitoring the variance-mean ratio for 

conspecific individuals along length-scales, we show that the effect of negative feedback 

is dominant at short scales, while aggregation characterizes the large-scale patterns. A 

comparison of different species indicates, surprisingly, that both aggregation and negative 

feedback scales are related to the overall abundance of the species.  This suggests a 

bottom-up control mechanism, in which the negative feedback dictates the dispersal 

kernel and the overall abundance.       
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Introduction 

 

One of the main characteristics of natural populations, and in particular of sessile species, is their 

spatial structure. In many cases conspecific individuals are aggregated in space, a phenomena 

that may be attributed to various mechanisms like dispersal limitation [1,2], positive feedback [3-

5] or habitat association. Negative feedback mechanisms, on the other hand, lead to an effective 

"repulsion" between individuals or clusters [6,7]; the excess competition between same-species 

individuals may induce self-thinning, and the presence of species-specific parasites or predators 

around an adult tree may decrease the chance of recruitment in its neighborhood. 

Turning from populations to communities, the dynamics of ultra-diverse systems like the tropical 

forest have attracted a lot of interest, as these systems appear to violate a fundamental 

assumption of natural selection theory, the competitive exclusion principle [8]. Many 

mechanistic solutions were suggested to this puzzle [9-15], and almost all of them have to do 

with some features of these spatial patterns. For example, a competition-colonization tradeoff 

[15] implies that the better competitors are more clustered in space. Unfortunately, it is quite 

difficult to relate directly the spatial patterns to the underlying process, since the details of the 

dynamics (like the recruitment kernel, or the identity of the best competitor) are usually 

unknown.  Still, by pointing out some generic features of the spatial structure of the forest, an 

analysis may put severe constraints on the suggested models and may serve as a guide for the 

establishment and refinement of more realistic hypotheses.  

A long-standing hypothesis, aimed to explain the apparent access biodiversity of the tropical 

forest, was suggested by Janzen and Connell [10,11]. Basically, the idea is that host-specific 
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enemies (like pathogens or herbivores) are attracted to an adult tree, making its neighborhood 

hostile to seeds and seedlings of the same species. Accordingly, conspecific individuals 

effectively repel each other, implying that inferior species may survive in the forest by filling the 

gaps between superior competitors.  

Recently, the Janzen-Connell hypothesis has gained a renewed popularity and attracted a lot of 

attention, following a few empirical studies that monitor conspecific negative density 

dependence and tracked its origin. In particular, a substantial decrease of seed efficiency close to 

a conspecific adult tree was demonstrated [16,17], and the reduction in the chance of 

establishment was attributed to the negative effect of soil biota  [18].   Moreover, the analysis 

suggests that the strength of this negative feedback is a good predictor of the commonness/rarity 

of a species in the tropical forest [17,18]. Similar results (that locally rare species suffer most 

from the proximity of relatives) were obtained in subtropical [19] and temperate [20] forests. 

These new results pose a few interesting questions. The first has to do with the range of the 

effect. For the Janzen-Connell mechanism to work the negative feedback has to be localized 

around the adult tree [21]. How such a localized interaction, with a range of, say, a few meters, 

can affect the  community-wide pattern in tree composition [22]? What is the mechanism that 

allows the negative feedback to dictate features of the forest on much larger scale? One can 

easily imagine a counter example, where the effect of negative feedback is balanced by another 

feature. For example, if the seedlings of the "fittest" species (the one that will select out all other 

species in the absence of negative-feedback mechanisms) cannot establish at all in a radius of 4 

meters around an adult tree, this may be the strongest repulsive effect among all species, still the 

fittest will be one of the most common species in a 500,000m
2
 forest (like the 50-ha plot in 
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Barro-Colorado Island considered below), with more than 10,000 trees, since its offspring win 

the competition once they are out of the 4m radius. 

This brings us to a second question: the relative strength of this negative feedback mechanism, as 

oppose to well-known processes that lead to aggregation of conspecific individuals, like 

dispersal limitation [6]. While the chance of a seed to germinate, or of a seedling establish as an 

adult, may be smaller close to a conspecific tree, the number of attempts (i.e., the number of seed 

and seedlings in the vicinity of a reproductive individual) is much larger, and the overall pattern 

will depend on the interplay between these factors. In particular, very strong negative feedback 

will leads to a lattice-like forest, while strong aggregating forces yield clumped patterns. In fact, 

it is well known that a pronounced feature of these spatial patterns is aggregation and clustering 

[2,23-25],  while a direct identification of negative feedback  effects from the overall spatial 

structure of the population has proved itself as quite a difficult task  [25]. Given that, one may 

wonder again about the relevance of conspecific local density dependent to the composition of 

the community.   

In this paper we are trying to shed some light on these problems. Analyzing the spatial patterns 

that emerge from a few generic models and comparing them to the empirical data, we show that 

local negative effects and "repulsion" between conspecific individuals indeed dominate the 

spatial pattern on very short length scales, while aggregation mechanism take over at larger 

distances.  

A more surprising outcome of our analysis emerges when we compare the results for different 

tree species. It turns out that both the aggregation and the negative feedback are related to the 

overall abundance of the species in the plot. This phenomenon suggests that the local negative 
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feedback cascades upscales (perhaps by controlling the typical recruitment length) to yield the 

global pattern. While we cannot suggest a specific mechanistic explanation for these features, we 

can extract some severe constraints on the possible models of forest dynamics.   

This paper is organized as follows. In the methods section we explain the usage of variance-

mean ratio and present the results of our analysis for point patterns obtained from a few well-

known mechanistic models. The results section is devoted to the analysis of empirical data from 

the Barro-Colorado island plot (BCI) [26-29], in comparison with the patterns surveyed in the 

methods, emphasizing the universality of the empirical patterns. Finally, we discuss our result in 

the general context of variance-mean ratio (Taylor's law) and analyze the apparent insights.   
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Methods 

 

The method we implement along this paper is a  multiscale analysis of the variance-mean ratio 

(VMR, also known as index of dispersion, Fano factor). As we shall see, the VMR technique 

allows for a direct demonstration of both negative feedback and aggregation on different scales.  

As long as one deals with a single species, the definition of scale is quite arbitrary: meters, 

centimeters or the average distance between neighboring trees are all reasonable measurement 

units. However, in any attempt to compare the statistical features of patterns observed for two (or 

many) different species,  that may have different abundance in the plot, the question of "natural" 

scale immediately arises. The use of an objective measure, like meters, is natural when the short-

range interactions have (almost) nothing to do with the overall abundance, while normalization 

by a species-specific unit length is required when the length scales are related to the abundance.   

In a recent work  [30], we have suggested that the second scenario is the relevant one, at least for 

the tropical forest we have examined. Using other methods of point pattern distribution analysis 

(nearest neighbor distance distribution, correlation length and cluster statistics), we discovered  

that spatial patterns of different species obey a universal scaling law once the length is 

normalized by the typical distance between conspecific trees ii NA /0  , where A  is the area 

of the plot and iN  is the abundance of the i-th species. Following this result, we implemented 

here two versions of the VMR analysis: one is based on objective scales, the other utilizes the 

species specific scale i0 .  As seen in the results section, the VMR analysis seems to support the 

conclusions of [30], suggesting that spatial patterns of different species are becoming similar 

once the distances are normalized (for every species) by i0 .  
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The index of dispersion is defined, in general, as the ratio between the variance and the mean of 

a random variable. Here we are looking at a population, i.e., all the individuals of the focal 

species i in the BCI 50-hactar plot. Covering the plot area by a rectangular mesh of lattice 

constant  , and counting the number of individuals in any box, the mean number for the i-th 

species will be ANi

2  and the variance depends on the spatial arrangement of the population.  

The variance mean ratio (VMR) will be a small number if each box contains, more or less, the 

same number of individuals and will be large when some boxes are almost empty and others are 

densely occupied so the population is clustered. The degree of clustering may depend on the 

length scale; accordingly, by plotting the VMR over scales one obtains a summary of the 

aggregation properties of the system.  

Along this paper  we present two types of plots. One is a plot of VMR versus the box area 2s , 

the other is a plot of VMR versus the normalized area  20
~

is  . In the last case length is 

measured in units of  i0  and  s~ indicates the mean number of focal species trees in a box.  

To wit, let us start with some examples of the VMR- s  plots for a few generic point patterns. The 

simplest case is the Poisson forest, in which trees are spread randomly all over the area. It is well 

known that, in such a case, the variance is equal to the mean and the VMR is unity, independent 

the units length used [31].  

It is interesting to note that the errors introduced by sampling noise also have similar properties. 

As long as the noise is uncorrelated among boxes, the sampling is equivalent to the 

multiplication of the population inside each box by a random number taken from some fixed 

distribution. In such a case the variance is larger than the mean, but the VMR is still independent 

of scale. These features of the Poisson forest and the sampling noise are demonstrated in Fig. 1.  
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Now let us consider the opposite case: a lattice forest. In such a forest a single tree occupies the 

center of each box of side length i0 . All boxes with i0   contain the same number of trees, so 

the variance and the VMR are both zero. For i0   each box is either empty or filled, 

(moreover, the mesh does not fit the lattice principle axes, and a very weak spatial disorder 

becomes relevant) and the VMR is unity. Accordingly, the VMR decreases towards zero as 

increases, as illustrated in Fig. 2.  

In a lattice forest the distinction between objective and abundance-dependent scales is clear.  

Since the only length scale in a lattice forest is i0 , a plot of the VMR vs. the dimensionless scale 

s~  (for different species with different abundance in the same plot) yields a data collapse. On the 

other hand, if the VMR is plotted vs. s  a different curve is obtained for every species and the 

lines are ordered: since the decay of the VMR from one (Poisson) to zero (lattice) occurs around  

i0~  , the curve for the most abundant species is the first to deviate from the Poisson value, 

then the second and so on.  

In general, the decay of the VMR on increasing length scales is a hallmark of negative feedback: 

when individuals repel each other, either via competition or by attracting hostile parasites, the 

spatial structure becomes lattice-like and the VMR decays at large distances. The opposite 

happens when individuals are aggregated. Again, at short length scales, the VMR must be 

Poisson-like, but for larger scales the variance increases faster than the mean, leading to an 

increasing VMR - s  line [32]. Figure 3 exemplifies this property for a fractal forest, a structure 

suggested as a model for the BCI by Ostling et. al. [33].  In such a fractal forest the typical 

distance between neighboring conspecific trees is a fixed number fractal , but i0  depends on the 

overall species abundance. As a result, the VMR- s plot shows data collapse for different species, 
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while in the VMR- s~  the curve deviates from the Poisson value when  ~fractal , so the curve of 

the rarest species starts to increase earlier. These characteristics of the VMR do not depend on 

any special features of a specific fractal structure (like the random Cantor set used here);  they do 

hold also for other fractals.  

A more mechanistic model of spatial aggregation is suggested by models that take into account 

the details of the underlying birth-death process.  In particular, the neutral theory of biodiversity 

suggests a simple framework, in which at every elementary timestep  one tree is chosen to die 

and is replaced by the offspring of another tree, chosen at random from the neighborhood of the 

dead individual [2]. Starting from the founder of the focal species, one can run a simulation of 

forest dynamics until the desired abundance is reached. This simulation is quite simple, since the 

assumption of neutrality saves the need to distinguish between non-focal species. Accordingly, 

the only parameter that affects the spatial structure is the recruitment kernel, i.e., the chance that 

an offspring from a tree which is located at a distance r from the dead tree will capture the empty 

slot.  

When the recruitment kernel is infinite (the chance of any tree to replace any other is distance-

independent) the forest is Poissonian. Here we consider two generic kernels:  the mixed local-

global kernel (MLGK, the reproducing tree is chosen, with probability , at random from the 

whole forest and with probability 1- from a 2-meter neighborhood of the dead tree. Clearly =1 

is the Poissonian limit) and the Cauchy kernel where the reproducing tree is chosen with 

probability P(r) that corresponds to the (fat-tailed) Cauchy distribution,   2
/11~)( recrrP  . In 

a previous work [2] we have tried to fit the cluster statistics of the BCI using these two kernels, 

and showed that the Cauchy kernel fits much better than the MLGK. Here we apply the VMR 
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analysis to a simulated forest with  these kernels, where the  parameters used are those that gave 

the best fit to the BCI in [2].  

Under neutral dynamics there are two length scales associated with each species: i0  that 

depends on the abundance and the scale associated with the recruitment kernel, rec . These scales 

are independent, and one should expect that the VMR shows substantial deviations from Poisson  

once  rec  . Accordingly, the VMR- s~  plot shows a clear order (the rare species curves raise 

first), while in the  VMR- s  diagram the data collapse (since we have taken the same rec  for all 

species).   

The MLGK kernel yields a spatial structure that resembles the patterns observed for a Cox 

process (where centers are chosen at random and then trees are spread, again at random, in the 

neighborhood of each center [34]); dispersal limitations induce clustering only within each local 

patch, but the large scale structure of the forest is Poissonian. Therefore, the VMR curve "bends 

over" towards the Poisson limit for   r ec   (since our forest is finite the large   behavior is 

noisy, but the trend is clear), yielding a hump-shaped graph (Fig. 4). For a Cauchy forest the 

length scale associated with the average recruitment radius is infinite and the VMR-area curves 

are monotonic. In fact, one can fit these curves quite nicely with the expression 
zsba ~  [32], 

where for all species 1a  (in the short scale Poissonian  regime)  and the values of the exponent 

5.0z  are also abundance independent, reflecting only the features of the recruitment kernel  

(Fig. 5).  

The results for all these mechanistic models are summarized in Table 1. Evidently, there are two 

essential qualitative characteristics for any VMR graph. The first is its behavior along scales, 

where an increase means aggregation, a decrease implies negative feedback and repulsion, and a 
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constant value suggests a Poisson distribution. The second characteristic emerges when the 

VMR's of species with different abundance is compared. If the typical distance between 

neighboring trees is i0  the VMR- s~  diagram shows a data collapse, and the frequent species are 

the first to leave the Poisson regime in the VMR- s   plot.  On the other hand, when the typical 

scale between neighboring trees is independent of i0  (e.g., the recruitment kernel) the collapse 

is manifested only in the VMR- s  plot, and the rare species are the first to show substantial 

deviations from the Poisson limit in the  VMR- s~   diagram.    



12 
 

Results  

 

Given the insights gained from the analysis of VMR plots for these generic models, we are in 

position to apply the same analysis to a real community of trees in the tropical forest. A-priory, 

one should not expect a perfect data collapse as those observed for the models, since the natural 

population dynamics is affected by all kinds of stochastic forces, and perhaps the assumption that 

trees of different species have the same spatial dynamics (e.g., the same recruitment kernel) is, in 

the best case, only a crude approximation. Still it is interesting to examine the empirical results 

and to find out if they show any kind of qualitative similarity to the models considered so far.      

Figure 6 show the VMR- s~  and the VMR- s plots for all the dbh>1cm individuals of the 43 

1000iN  species in the BCI forest.  These results are ambiguous: on the one hand,  the gross 

features of the plot resemble those of the neutral Cauchy forest: a Poisson region for small length 

scales followed by a power-law growth at large scales (the Fractal forest has also these feature, 

but the data from the BCI do not show the spatial "macro-gaps " like those observed in  Fig. 3).  

On the other hand, while none of the panels shows an impressive data collapse, the VMR- s~  

curves appears to fall in a much narrower region, suggesting that the more relevant length-scale 

is i0 .  

The idea of a forest with Cauchy-like recruitment kernel appears to be plausible. It agrees (as 

mentioned above) with our detailed analysis of the spatial patterns for the most abundant species 

[2] and with the fractal analysis of [1].  For all species 1a  indicating that the sampling errors 

are small. The exponent z has values for all the species [see insets of Figs 5(a) and 6(a)] 

suggesting that the long-distance properties of the spatial dynamics are governed by fat tailed 
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processes.   To explain the absence of a data collapse in the VMR-s plot one may propose that 

different species has different typical recruitment scale rec .  Nevertheless, the quasi-collapse in 

the VMR- s~  plot suggests a more radical insight: that the recruitment kernel of a species is 

proportional to i0 , i.e., that there are correlations between the typical distance between a tree 

and its offspring (a "local" characteristics of the dynamics)  and the overall abundance of this 

species in the forest – a "global" feature.  This conclusion is in agreement with another study that 

our recent study  [30], supporting this "glocality" by implementing other point-pattern analyses.   

An interesting finding was discovered when we considered the short-range region of Fig. 6 in 

more detail. Although the VMR curves at short scales appear to stick to one as expected in the 

Poisson regime, a zoom into the small s region reveals a weak, but pronounced, repulsion (anti-

correlation) between conspecific trees, with a typical decline of VMR below one as observed for 

a lattice forest (Fig. 7). Although this submetric deep is weak and very noisy, it appears in many 

species and, unless it reflects an artifact of the data collection procedure, seems to indicate 

repulsion. Note that the weakness of the negative feedback signal does not imply that the effect 

itself is weak, since it competes with the aggregation mechanism (dispersal limitation, say) over 

all scales.   

Amazingly, the negative feedback mechanism demonstrated in fig. 7, seems also to be related to 

the global scale i0 .  First, the lines in the repulsion zone appear to follow a species-independent 

curve in the VMR- s~  plot, while there is no such a feature in the VMR- s . Second, only in VMR-

s~   plot the strength of the repulsion is (negatively) correlated with the height of the VMR in the 

attractive regime, e.g., at 10 i . This feature is depicted in panels (c) and (d) of Fig. 7, where 

the attraction at a fixed rescaled distance is plotted against the strength of   repulsion (measured 
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by the inverse distance between the minimal value of VMR for a certain species and the Poisson 

level at VMR=1).  The weaker is the repulsion, the higher is the VMR at 1~
0  is  . This 

correlation does not appear in the VMR- s  plot. 

The simplest (although quite radical) interpretation of our results is that the negative feedback 

controls both the aggregation and the overall abundance of a species in the forest; hence all these 

patterns are related to the same scale.   A possible explanation is that the evolutionary 

development of dispersal strategies may be governed by the negative feedback so the recruitment 

kernel increases with the strength of the local negative density dependence, otherwise the loss of 

seeds in the prohibited zone will lower the species' fitness and will lead to extinction.        

Discussion 

 

The scaling of the variance with the mean is known as an interesting statistical parameter used to 

characterize the fluctuations in a system. In particular, the index of dispersion (ID) is widely 

used in the analysis of ecological point patterns [36].   The usage of this statistic as an indication 

for Poisson distribution  was criticized by many authors, since the VMR is one for a whole set of 

non-Poissonian distributions (the so called 'unicornian' distributions [37]) but these distributions, 

in general, do not keep this unicornian  property under spatial rescaling (i.e., they are not 

"Tweedy" [31]). The variation of the VMR (Fano factor) over scales is a very common analytic 

tool in other branches of science and in particular in the analysis of neural spike trains, where the 

deviations from the Poissonian limit indicate either aggregation or repulsion [35]. 
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One of the popular methods used in ecology to characterize spatial clumpiness is the exponent of 

the variance-mean curve, or its slope when plotted on a double-logarithmic scale. Comparing the 

variance-mean relationships of many censuses that involved quadrants of different size, Taylor 

[38] decided that the variance scales like a power of the mean, with an exponent b that, in most 

cases, falls in the region 1 < b < 2.  Clearly, the variance-mean slope and the VMR considered 

here are related and b=z+1. As showed here, Taylor's law cannot hold on small scales (at least 

for scales that are shorter than the typical distance between two individuals) where the 

fluctuation statistics must become Poissonian. This observation is compatible with other works 

that criticized Taylor's conjecture [32].   

However, as already suggested by Nedler [32], in the intermediate scales we have found, indeed, 

a reasonable fit to the variance-mean relation  
zsbaVMR ~  over 2-3 decades. The exponent z 

appears to be in a narrow range of parameters for almost all the species considered here, once the 

length scale is normalized by i0 , i.e, once the VMR is plotted against the mean ) s~ ). This 

observation suggests that all species are subject to the same kind of spatial dynamics, where the 

only difference is the basic length scale associated with the overall abundance of the species in 

the forest i0 . It also agrees with our new work [30], where we show that a few basic 

characteristics of the spatial structure  become similar for all the species under species-specific 

normalization of the length scale by i0 .   

The plots of the VMR along scales, presented here, allow us to point out a possible underlying 

mechanism.  The weak decrease of the VMR below its Poisson limit is an evidence for a short-

range repulsion between conspecific trees. Accordingly, the VMR at any scale reflects the 

interplay between short-range repulsion and the intermediate range aggregating mechanisms.   
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As seen from the numerical simulations, when the dynamics has no repulsion the VMR at 1~ s

is decreasing as the abundance is increasing. The fact that this relation is destroyed by the 

repulsive forces implies that the strength of repulsion is correlated with i0 , i.e., with the overall 

abundance of the species in the forest. The "universal curve" that characterizes the repulsion in 

the VMR- s~  plot (Fig. 7), and the absence of correlations between the repulsion and the VMR at 

the non-normalized scale ms 10 , also point toward this hypothesis. If true, these findings 

appear to be consistent with the conclusion of [17,18,20] and others, and to suggest that the 

repulsive interaction affects the overall abundance since it governs the process that leads to 

aggregation.   

The suggested correlation between negative feedback and abundance seems to put severe 

restrictions on any proposed underlying mechanistic model. It is clear that in a model where 

species differ by their competitive ability (i.e., in a site which is far away from any conspecific 

adult, the seeds/seedlings of species A have a better chance to establish than the seeds/seedlings 

of species B) this feature will dictate the large-scale abundance and will destroy the correlation 

between negative feedback and i0 .  Accordingly, a minimal model that will preserve the 

features demonstrated here is a generalized version of Hubbell's neutral model of biodiversity 

[9], in which every species has its own "typical distance" that dictates both the negative feedback 

and the dispersal kernel, but otherwise all individuals are equal, i.e., the chance of seedlings to 

capture a site is independent of species identity once all these seedlings are out of the negative 

feedback zone. Such a model may settle the apparent contradiction between Hubbell's version of 

the neutral theory, in which species identity has nothing to do with its abundance, and the long 

distance correlations between the abundance of trees that belong to the same family pointed out 

recently by [39]. However, it is not trivial that the nice features of the neutral dynamics, like 
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coexistence and realistic species-abundance distributions in a mainland-island setup, are 

preserved when a species-specific length scale is introduced. We hope to consider this problem 

in a future work.      
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Figure 1. VMR versus s~  for a Poisson forest, with different levels of sampling error  . When 

there is no sampling error ( 0 ) the VMR equals unity and is independent of scale as expected. 

The graphs for 0  were obtained for different strength of the sampling error.  In the 

simulations, an elementary box of arbitrary area was defined, and for each box j a random 

number  ]5.0,5.0[j  is assigned. The number of trees at any box was then picked at 

random from a Poisson distribution with an average j20 , so for  40 one obtains the 

maximal sampling noise.   Clearly, sampling errors increase the size of the fluctuations, but (as 

long as the error is spatially uncorrelated) the VMR curve is still s~  independent.  
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Figure 2. The lattice forest. VMR vs. s~ (A) and vs. s  (B). For every species of Ni trees, a 

square lattice with unit length i0  admits  Ni vertices in a forest of area A. In the  simulated 

forest a single tree is located at random within a fixed distance (much smaller than the lattice 

constant) around  every vertex. Example of a two species (frequent – green triangles, rare – red 

points) lattice forest is given in the inset of panel (B). The VMR at short length scales is still 

unity, due to the weak noise, but decreases to zero at large scales, when every box contains the 

same number of trees. The VMR line shows substantial deviations from the Poisson limit when 

the average number of trees inside a box is one. Accordingly, the frequent species VMR is the 

first to decay (panel (B)). On the other hand, when the VMR is plotted against s~  the curves 

collapse.  The results are shown here for species with different Ni-s, to reflect the range of 

abundance one finds in the BCI. The mean of 10 curves are presented for every frequency class, 

where different colors correspond to different Ni-s.  The numbers Ni and the size of the plot (a 

rectangle of 500X1000 meters) were chosen at order to mimic the abundance classes and the area 

of the BCI forest, both here and in the following figures. 
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Figure 3. The fractal forest: VMR for a random Cantor set forest vs. s~  (A)  and vs. s  (B). We 

have run the algorithm suggested in Ostling et al., starting with a 2x2 array. Each cell is chosen 

to be empty with probability P or to be "active" with probability 1-P.  An active cell is then 

divided into 4 equal squares and the process is iterated. The process (using P=0.75) stopped 

when the forest reaches a size of 256x256 cells. A single realization of the fractal is shown in the 

inset of panel (B). The area of any elementary box is defined to be 16m
2 

and n=40 trees were 

located at random within each active box. Implementing a few realizations of the same 

algorithm, we were able (due to the randomness of the process) to generate a few sets of focal 

species trees, sets that have the same fractal structure but different abundance. For the analysis 

presented below we have grouped together realizations that have, more or less, Ni trees and show 

the mean of them. As expected, the VMR deviates upward from unity at intermediate length 

scales. Since the minimal distance between neighboring conspecific trees is independent of the 

abundance of a species, the curves collapse in the VMR- s plot, while in the VMR- s~  plot the 

rarer is the species, the lower is the point in which its curve begins to bend upward.    
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Figure 4. A neutral forest with local-global recruitment kernel. VMR vs. s~  (A) and vs. s (B).  

The dynamics is neutral, and the LG recruitment kernel is applied with 1.0 , which is the best 

fit parameter to the cluster size statistics [2]. To imitate the BCI forest the simulations run over 

500x1000 m rectangle, with a neutral dynamics used in [2], until the abundance reaches Ni trees. 

The mean of ten iterations for every value of Ni is shown. The Poisson region is evident on short 

scales, and clustering manifests itself on the intermediate scales. On larger length scales the 

curves must return to the Poisson limit, as clusters locations are uncorrelated. Here (for 

simulations on the scale of the BCI forest, and with the relevant parameters) one can see only the 

early onset of the decrease.  On large scales the curve should return to unity. 
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Figure 5.  The neutral-Cauchy forest. VMR vs. s~  (A)  and vs. s (B). The dynamic is the same 

as in fig. 4 but here Cauchy recruitment kernel is applied with 20 , which is the parameter 

that yields the best fit to the cluster size statistics [2]. One may see the Poisson region in short 

scales, and the intermediate scales of clustering, but there is no return to the Poisson limit on 

large scales. The inset in (A) shows the parameters of the VMR fit to 
zsba ~  . The fit for 

specific species is for the average of 10 iterations and for the 11 first points (the last points are 

too noisy). R
2 

>0.999 for all the fits shown in this figure.  
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Figure 6. VMR for the real data from the BCI plot. The VMR vs. s~   (A) and  vs. s  (B) is shown  

for all the  43 species with abundance > 1000 trees. The inset in (A) shows the parameters of the 

fit to 
zsba ~ , here in most of the curves R

2
>0.99 (except two for which  R

2
>0.96).   
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Figure 7. The deep at short length scales. Panels (A-B) show the same datasets presented  in 

fig.6, zooming into the short length scale. In panels  (C-D) The attraction parameter (VMR at 

1~ s ) is plotted against the inverse of the repulsion parameter (VMR at the deep maximum, see 

the inset of C). The red lines are the linear fit, showing almost no correlation in (D) (Pearson 

correlation coefficient is 0.03 and the p-value is 0.8)  but quite pronounced correlation in (C) 

(Pearson 0.3,  p-value less than 0.05).   
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Table 1 

Length scale that governs 

the typical distance 

between neighboring trees 

Model(s) VMR 
VMR- s for 

different N-s 

VMR- s~ for 

different N-s 

i0  Poisson Stays fixed Data Collapse Data Collapse 

i0  Lattice 
Decreases 

to zero 

No collapse, 

abundant species 

are the first to 

descend. 

Data Collapse 

Recruitment kernel rec  MGLK 
Hump-

shaped 
Data Collapse 

No collapse, rare 

species are the 

first to ascend. 

Recruitment kernel rec  Cauchy Increases Data Collapse 

No collapse, rare 

species are the 

first to ascend. 

Fractal unit length 
Random 

Cantor set 
Increases Data Collapse 

No collapse, rare 

species are the 

first to ascend. 

 

 

 


