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a b s t r a c t

Wind routinely topples trees during storms, and the likelihood that a tree is toppled depends critically

on its allometry. Yet none of the existing theories to explain tree allometry consider wind drag on tree

canopies. Since leaf area index in crowded, self-thinning stands is independent of stand density, the

drag force per unit land can also be assumed to be independent of stand density, with only canopy

height influencing the total toppling moment. Tree stem dimensions and the self-thinning biomass can

then be computed by further assuming that the risk of toppling over and stem maintenance per unit

land area are independent of stand density, and that stem maintenance cost is a linear function of stem

surface area and sapwood volume. These assumptions provide a novel way to understand tree

allometry and lead to a self-thinning line relating tree biomass and stand density with a power between

�3/2 and �2/3 depending on the ratio of maintenance of sapwood and stem surface.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Interest in tree allometry has increased in recent years as
forests have been identified as a potential sink for atmospheric
carbon. Studies on the proportions of tree organs indicate that
much of the biomass in a forest is in stems and that this
proportion increases with forest age. Another generalization
states that when there are more individuals per unit land area
(e.g., per hectare), the total biomass of the individuals decreases
(Yoda et al., 1963). This relationship, called the ‘‘self-thinning
law’’, is so consistent that it has been called ‘‘the only general-
ization worthy of the name of a law in plant ecology’’ (Hutchings,
1983). Numerous empirical papers have shown that for even-aged
monocultures, the maximum biomass of an individual is a power
function of stand density (individuals per unit land area), with a
slope of approximately �3/2 when both axes are plotted on
logarithmic scales (Osawa and Allen, 1993). Mathematically, this
can be described as

wtpD�3=2, ð1Þ

where wt is the average total biomass (all symbols listed in
Table 1) of a plant and D is stand density and the sign in between
stands for proportionality (with equal sign a constant would need
to be added). Many theories have been proposed to explain the
ll rights reserved.
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self-thinning law (e.g. Adler, 1996; Givnish, 1986), but none has
gained wide support.

Schiel and Choat (1980) showed that the self-thinning law
does not apply to marine algae, where the size of individuals can
even increase with increasing density. This suggests that self-
thinning might be related to structural requirements for staying
erect on terrestrial environments. Seven years later Weller (1987)
demonstrated that many datasets on terrestrial vascular plants
published earlier to support the self-thinning law in fact lead to
exponents that diverge from �3/2 (in Eq. (1)) when the correct
statistical approach is applied. His paper (Weller, 1987) led to a
decrease in papers on self-thinning even though he concluded
that the variable exponent ‘‘may provide a valuable measure of
the ecological differences among species and stands, and a
powerful stimulus for further research’’.

The objective of this paper is to present a model to explain self-
thinning law from a new perspective, which will probably be the
first attempt to explain the self-thinning law based on wind
friction in canopies. Because of the novelty of the approach, the
presented model is simple in order to introduce the new
assumptions and implications, which will hopefully encourage
more complex modeling based on the same principles. In the next
three sections I present ideas necessary for understanding the
thinking behind the assumptions of this new model.
2. Stagnation and self-thinning

A central element of forest management is the use of thinning
to manipulate stand structure and maximize growth (Davis and
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Table 1
Symbols in equations.

Symbol Definition Possible unit

a Leaf area of a tree m2

D Stand density m�2

const Constant (changes from one equation to another) –

E Stem maintenance cost per unit land area W/m2

es Stem surface maintenance cost of a tree W

ew Wood maintenance cost of a tree W

h Height of the tree m

j Parameter on maintenance of sapwood –

k Parameter on maintenance of stem surface –

m Moment that a stem of a tree can resist Nm

r Stem radius of a tree m

ws Stem biomass of a tree kg

wt Total biomass of a tree kg
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Johnson, 1987). In a sparse stand, much light penetrates the
canopy without being used by the trees and therefore the gross
primary production of trees is low. On the other hand, growth in
an overly dense stand suffers from high maintenance cost relative
to the gross primary production of trees. The maintenance cost is
composed of both maintenance respiration and replacement of
leaves and fine roots. In extreme cases when the stand is dense
and nearly all energy (or carbohydrates) is allocated into
maintenance, growth ceases and the stand reaches ‘‘stagnative
equilibrium’’. Theoretically it is obvious that with a given stand
density and closed canopy, gross primary production is relatively
constant and that larger stems require more energy for main-
tenance. Therefore, growth ceases at a certain stem size if
individuals are identical (or all individuals die).

In practice, stagnative equilibrium has been documented in
surprisingly few studies. Ecological papers typically focus on
stands with individuals of varying size, age and normally even
species and therefore certain individuals start dying (self-thinning
occurs) when the most competitive individuals are still growing
significantly (e.g. Osawa and Allen, 1993). Forestry literature
describes how stand density influences stem growth of often
nearly identical individuals but unfortunately the interest has
been mainly in wood production and therefore in stand densities
leading to high or moderate stem growth and not those close to
stagnative equilibrium (Davis and Johnson, 1987). Significant
exceptions are the well studied very dense Pinus contorta stand
that has been naturally regenerated after fire from serotinous
cones and which grow very slowly and are close to stagnative
equilibrium and can be released from it by thinning (e.g. Farnden
and Herring, 2002). At the individual level many understory trees
are at a similar situation that nearly all energy produced is
required for maintenance and growth is extremely slow. Although
at stand level stagnative equilibrium is rare in nature it is
ecologically and physiologically nearly identical to self-thinning if
the variability between individuals is small and is the simplest
basis to understand tree stem dimensions and allometry in
general.
3. What determines the stem dimensions of trees?

Several theories have been put forward to explain tree stem
dimensions. The ‘‘pipe model’’ assumes that the quantity of leaves
above a given level is proportional to stem cross-sectional area at
that level (Shinozaki et al., 1964), but does not explain stem
height, heartwood and inter-specific variability. The three main
approaches to understanding the height-radius ratio are: geo-
metric similitude, elastic buckling and stress similarity (Niklas,
1992). The theory of geometric similitude simply assumes that
ratios of dimensions remain the same when trees grow. However,
geometric similitude is not based on understanding of evolu-
tionary drivers of allometry, i.e. survival or reproduction.

It is evident that extra height is beneficial in exposing trees to
more light and that the stem radius should be as small as possible
in order not to waste energy. The theories of elastic buckling and
stress similarity are the main options to explain how small is
possible. McMahon (1973) showed that if the fresh biomass of the
above-ground parts of a plant is above the limit of ‘‘elastic
buckling’’ the stem will bend irreversibly. This theory is based on
thinking that crucial in plant allometry is the avoidance of elastic
bucking. Interestingly, when only stem biomass (branches and
leaves excluded) is taken into account the height leading to elastic
buckling scales to stem radius to the power of 2/3 (McMahon,
1973). This mathematically simple relation has been used in
dozens of journal articles (e.g. correctly (King et al., 2006) and
incorrectly (West et al., 1999) as they do not take into account the
influence of subsequent branching). However, empirical data has
shown that most plants are far from the maximal height, leading
to elastic buckling. For example Niklas (1994a) measured plants
belonging to 111 species and concluded that the ‘‘safety factor’’,
which is the ratio of the height leading to elastic buckling and
actual height, was very variable but on average approximately 4.
Because of non-linear relationships, for a tree with a safety factor
of 4, gravity causes just 1.6% of the necessary force needed for
elastic buckling. However, it is probable that the safety factor is
lower in general in self-thinning stand (King, 1981).

The need for a safety factor has been correctly explained to be
necessary as in addition to gravity acting on the fresh biomass of
the plants temporary forces such as wind and snow load could
potentially cause toppling over and death. However, the approach
to understand tree allometry based on elastic buckling is
misleading as the additional forces required to cause toppling
are very weakly linked and important relative to gravity acting on
tree. This causes the wide range of safety factors found in trees.
For example swaying in the wind has been shown to decrease the
height-radius ratio (Coutand et al., 2008) and therefore increasing
the safety factor. In forests in snow-free climates wind is basically
the only significant force toppling over trees in addition to their
own fresh biomass (with the main exception of trees pulled down
by other toppling over trees). I therefore argue that in simple
modeling of mature trees when only one toppling over force can
be taken into account it is best to focus on wind and the theory of
stress similarity that focuses on breaking strengths of stems
(Niklas, 1992), as I do in this paper. Plants such as shrubs, which
can be bent down to the ground without breaking, need another
approach.

The drag caused by wind friction is difficult to model as
bending of the branches and leaves and variable wind speeds for
each leaf complicate the phenomenon. The moments resisting
uprooting are also very difficult to model as they depend on both
the roots and the soil. However, beam theory in basic engineering
science suggests that stems resist breaking (bending stress of a
beam) simply with a moment (m)

mpr3, ð2Þ

where r is stem radius inside the bark (in this equation at any
height but in subsequent equations at any given height relative to
stem height), when the wood is homogenous and shear forces are
not taken into account (Niklas, 1992). The third power for r comes
from the fact that increasing radius not only increases the number
of vertical fibers responsible for the strength of the wood, but also
increases their average distance from the neutral axis (where
neither elongation nor shortening occurs when the stem is
bending), thus increasing the average moment of the fibers
resisting bending (Larjavaara and Muller-Landau, 2010). The
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moment (m) is equal to the product of force and length of the
lever arm (e.g. height of a crown). This theory of stress similarity
has been successfully used to explain stem tapering (Dean et al.,
2002), trunk and branch wood density (Anten and Schieving,
2010) and life-history variation (Sterck et al., 2006).

A strong stem is useless for trees that uproot easily. Therefore
evolutionary pressure has strengthened the root system in
allometric balance to resist approximately the same moment as
the stem in conditions in which the root system would otherwise
be weaker (shallow, moist or nutrient-rich soils). This is
supported by studies showing that both uprooting and stem
breakage occur in many species in a given stand (Niklas, 1992;
Peltola et al., 2000; Putz et al., 1983). I therefore argue that Eq. (2)
can be used as the basis for theories on tree allometry as is
demonstrated in section ‘‘Structure of the new model’’.
4. How to model wind drag on the canopy?

Eq. (2) has probably never been used in modeling height-
radius ratio, presumably because the drag force in canopies is
difficult to model at the tree level (Coutts and Grace, 1995)
compared to elastic buckling. The self-thinning law has been
developed to describe density–size relations in a monocultural
even-aged stand. Independent of the stand density, leaves need a
certain level of light for a positive energy balance. Therefore the
leaf area index (total leaf area per unit area) is independent of the
stand density once the stand has recovered from disturbances as
in the case of self-thinning stands (Osawa and Allen, 1993).
Therefore

aD¼ const, ð3Þ

where a is the leaf area of one tree, D is stand density and ‘‘const’’
refers to a constant. This implies that the drag force caused by the
wind on leaves per unit land area is also independent of stand
density assuming that the average wind force on an individual
leaf is independent of stand density. The moment per unit area
caused by this force can then be simply computed from the height
of the leaves.
5. Structure of the new model

I now focus on even-aged stands at the self-thinning limit and
in stagnative equilibrium to understand the self-thinning law
better. I assume that wood density, structure and size of
individual roots and branches as well as the total number of
roots and branches per unit land area are independent of the
stand density. I also assume that the leaf area index is
independent of stand density. As growth is very slow, its variation
depending on stand density is insignificant and therefore the
energy usable for the maintenance per unit land area is also
independent of stand density (same assumption justified if
growth is significant but the same fraction of energy is always
allocated in growth). As the energetic maintenance costs of leaves,
branches and roots per unit land area are independent of stand
density the energy available for maintenance of stems per unit
land area also needs to be independent of stand density at the
self-thinning limit. In addition, I assume that gravity does not act
on bending trees (see section ‘‘What determines the stem
dimensions of trees?’’).

Wood provides support and transports sap to the canopy. As
dead heartwood provides support but does not require main-
tenance it is justifiable to assume that the sap flow function of the
wood causes the total wood maintenance cost and that this cost is
proportional to the product of the distance and amount of sap that
needs to be transported. By assuming that the height of branches
relative to height of the tree (h) is independent of the stand
density in fully stocked stands and that the leaf area of one tree
(a) is proportional with the amount of sap transported the wood
maintenance cost (ew) is

ewpah, ð4Þ

based on the function of tree stems. Alternatively, based on the
tree structure, the same relation can be derived assuming the
total wood maintenance (ew) is proportional to sapwood volume
and that the cross-sectional area of sapwood is proportional to the
leaf area above it as in the pipe model (Shinozaki et al., 1964).

Empirical studies indicate that the energetic maintenance cost
of inner bark is high (Pruyn et al., 2002) and that stem surface
area better explains total stem maintenance cost than sapwood
biomass or volume (Bosc et al., 2003). This can be caused by both
the respiration of the inner bark and increased wood respiration
due to closeness of stem surface. The importance of stem surface
area in determining stem maintenance cost is not biochemically
well understood but could be linked to protection against
pathogens, which often enter through the stem surface. It is clear
that sapwood of a living tree is actively protected against
pathogens as sapwood decays less likely in the living tree but
more likely in a dead tree than heartwood (David A. King,
unpublished). In the new model the maintenance cost of stem
surface (es) is proportional to the surface area of the stem, which
can be calculated assuming that the stem taper is independent of
the stand density as

esprh: ð5Þ

Combining Eqs. (4) and (5) and multiplying by the number of
individuals per unit area (D) or stand density leads to the total
stem maintenance cost per unit land area (E)

E¼DðjahþkrhÞ, ð6Þ

where j and k are parameters dependent on the ratio of
maintenance cost of the wood and of the stem surface. These
parameters need to be added as the relatively importance of these
two costs is unknown and probably climate and species specific.
According to the assumptions E and the product of D and a

are independent of stand density (Eq. (3)) and can be replaced
by a constant. Taking this into account when solving h, Eq. (6)
converts to

h¼
const

ðj constþkDrÞ
: ð7Þ

Based on another assumption (Eq. (2)), the height of trees
leading to breaking at a given wind speed is

hp
r3

a
, ð8Þ

as the moment caused by the drag of wind on the base of the stem
is proportional to both the height (h) and leaf area (a).
Evolutionary pressure forces trees to maximize their height (h),
within the constraints of not taking excessive risks of toppling
over (Eq. (8)) and not exceeding the highest possible maintenance
cost (Eq. (7)) and have dimensions close to the point correspond-
ing to the highest possible value of height (h). Because Eq. (8) is
rising (when h is shown in function of r for a given D and therefore
a) and Eq. (7) is descending (except when k is zero) the
intersection of these two functions reveals the dimensions of tree
stems (see Fig. 1). The intersection can be solved by combining
Eqs. (7) and (8) as shown in the appendices.
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Fig. 1. Functions A10 and A1 show the maximal height without excessively high

risk of toppling and functions B10 and B1 the maximal height based on the

energetic maintenance cost of the stem for a given stand density in a self-thinning

situation. A10 and B10 are computed from a tenfold stand density compared to A1

and B1. The arrows show how a 90% decrease in stand density changes stem

dimensions from the intersection between A10 and B10 to the intersection between

A1 and B1. (A) demonstrates the situation when stem surface and (B) when

sapwood is assumed to cause all the maintenance. The functions B10 and B1 form

an identical horizontal line in (B). Functions A10 and A1 are based on Eq. (8) (where

a is constant for a given function), functions B10 and B1 in (A) on Eq. (A.1) (where D

is constant for a given function) and function B10&1 in (B) on Eq. (B.1). The

assumption that stem dimensions are determined by the intersection between

functions A10 or A1 and B10&1 to give the maximum possible stem height is

irrelevant in the theoretical case of (B), as equal heights but larger radii are equally

possible, leading to greater strength.
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6. Allometry and self-thinning law based on the new model

In the theoretical situation when the value parameter j of
Eqs. (6) and (7) is zero and sapwood is assumed to make no
contribution to stem maintenance

wspD�3=2, ð9Þ

where ws is biomass of the stem of a tree individual, as shown in
Appendix A. This is equal to Eq. (1) with the exception that Eq. (9) is
for stem biomass and Eq. (1) for total biomass (or total above-
ground biomass). In the reverse theoretical case when the parameter
k is zero and sapwood causes all the maintenance of a stem

wspD�2=3, ð10Þ

as shown in Appendix B. These two theoretical extremities are
shown graphically in Fig. 1A and B. In reality, since both stem surface
and sapwood always cause maintenance, both extremities are
unrealistic. For example Bosc et al. (2003) showed that for the Pinus

pinaster that they studied stem surface maintenance cost is
approximately half of the total stem maintenance cost.

The classic self-thinning law focuses on the total or above-
ground biomass of an individual and not just stem biomass. The
new model assumes that the biomass excluding stems per unit
land area is independent of stand density and the slope of the self-
thinning line excluding stems is therefore �1. The slopes of self-
thinning lines for total tree biomass are intermediate between �1
and the self-thinning line for stem biomass, which depends on the
values of j and k. The higher the proportion of stem biomass is,
and the higher the proportion of stem surface maintenance of
total stem maintenance, the steeper the slope of the self-thinning
line is (except when sapwood causes a very large proportion of
stem maintenance).
7. Increasing complexity of the new model

The model described in the previous sections is simple and
presented in this short article to encourage development of more
realistic and complex models following the same principles.
However, most of the dozens of possible adjustments making the
model more realistic are species-specific.

Perhaps the most obvious areas in which to make the model
more realistic are related to the structure of the trees. Most trees
have a main stem as assumed in the new model but they also have
varying branch lengths depending on tree size, which is not taken
into account in the new model. Furthermore, the model assumes
that the biomass and energetic cost per unit land area of roots is
independent of stand density.

Ryan et al. (2006) review numerous studies indicating that the
assumption of invariable gross primary productivity with invari-
able leaf area index and variable tree height is incorrect.
Increasing height may decrease the efficiency of photosynthesis
because of hydraulic limitations (Ryan et al., 2006). This could be
taken into account in the model. Also the assumption of equal size
of all tree individuals and stagnative equilibrium would not be
needed if a game-theoretical approach including realistic ranges
of tree radii, heights and growth rates could be chosen.

The drag force created by wind acting on an individual leaf is
central to the new model. However, wind also acts on stem and
branches, causing an additional drag and the average wind speeds
acting on leaves might increase with size as the canopy roughness
changes when leaves are arranged more like vertical clusters than
a horizontal layer (Coutts and Grace, 1995). As explained earlier, in
most falls of healthy trees the force of wind acting on the canopy is
probably the most significant single factor. However, gravity
acting on the fresh biomass of the tree is always after some
bending an additional factor that could be included in the model.
8. Conclusions

Focusing on the allometry of an individual without paying
enough attention to its biotic surroundings has been the dominant
approach in developing theories on tree structure (Niklas, 1994b).
However, understanding the allometry of trees in an overcrowded
stand that is stagnating and is at the limit of self-thinning is the
simplest and therefore in many ways the best approach to model
tree structure. This enables the use of Eq. (3) for modeling the
toppling moment caused by wind drag and together with assump-
tions on stem maintenance not only explains the height–radius ratio
as some earlier models (McMahon, 1973) but also explains both the
height and radius relative to stand density. Thanks to this it can be
applied to self-thinning law and lead to realistic self-thinning line
slopes ranging upwards from �3/2. Increasing stand density
decreases biomass per unit land area (i.e. self-thinning law) as the
trees in them need to be shorter for stability and need to avoid a
large stem surface area requiring maintenance. Numerous species
and site-specific complicating factors influence the precise slope of
the self-thinning line. More sophisticated species-specific models
including some of the aspects presented in the previous section
could be developed and tested with simple self-thinning data.
Alternatively ecophysiological data on maintenance or diameter,
height and leaf area data for tree individuals in stagnating stands
could be used to test some of the assumptions presented in this
article. The model could be also applied to non-stagnating stands
when growth or leaf area information is available or on estimating
biomass based on remote sensing data on tree heights when data on
stand density is not available.
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Appendix A

When sapwood is assumed not to make contribution to stem
maintenance and the parameter j is therefore zero Eq. (7)
simplifies to

h¼
const

Dr
: ðA:1Þ

Combining this with Eq. (8) leads to

r3

a
¼

const

Dr
, ðA:2Þ

and further to

r4
p

a

D
: ðA:3Þ

Combining this with Eq. (3) leads to

r4 ¼
const

D2
, ðA:4Þ

which simplifies to

r¼
const

D1=2
: ðA:5Þ

As stem biomass of a tree (ws) is in general

wspr2h, ðA:6Þ

it is in this self-thinning situation based on Eq. (A.1)

ws ¼ r2 const

Dr
: ðA:7Þ

Combining this with Eq. (A.5) leads to

ws ¼
const

DD1=2
, ðA:8Þ

and to

wspD�3=2: ðA:9Þ

Appendix B

When stem surface is assumed not to make contribution to
stem maintenance and the parameter k is therefore zero Eq. (7)
simplifies to

h¼ const: ðB:1Þ

Combining this with Eq. (8) leads to

r3

a
¼ const, ðB:2Þ

and further to

r3
pa: ðB:3Þ

Combining this with Eq. (3) leads to

r3 ¼
const

D
, ðB:4Þ

which simplifies to

r¼
const

D1=3
: ðB:5Þ

As stem biomass of a tree (ws) is in general

wspr2h, ðB:6Þ
it is in this self-thinning situation based on Eq. (B.1)

wspr2: ðB:7Þ

Combining this with Eq. (B.5) leads to

ws ¼
const

D2=3
, ðB:8Þ

and to

wspD�2=3: ðB:9Þ
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