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Abstract

Background: Strong patterns of habitat association are frequent among tropical forest trees and contribute to the
maintenance of biodiversity. The relation of edaphic differentiation to tradeoffs among leaf functional traits is less clear, but
may provide insights into mechanisms of habitat partitioning in these species rich assemblages.

Methodology/Principal Findings: We quantify the leaf economics spectrum (LES) for 16 tree species within a Bornean forest
characterized by highly pronounced habitat specialization. Our findings suggest that the primary axis of trait variation in
light-limited, lowland tropical forests was identical to the LES and corresponds with the shade tolerance continuum. There
was no separation with respect to edaphic variation along this primary axis of trait variation. However, a second orthogonal
axis determined largely by foliar P concentrations resulted in a near-perfect separation of species occupying distinct soil
types within the forest.

Conclusions/Significance: We suggest that this second axis of leaf trait variation represents a ‘‘leaf edaphic habitat
spectrum’’ related to foliar P and potentially other nutrients closely linked to geological substrate, and may generally occur
in plant communities characterized by strong edaphic resource gradients.
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Introduction

A central focus of plant ecology is to understand how functional

traits contribute to the distribution of species at various spatial

scales [1]. Distinct species distribution patterns with respect to

abiotic gradients have been documented repeatedly in a wide

range of plant communities and play an important role in diversity

maintenance. In tropical forests, variation in light, hydrology, and

geologic substrate correlate with tree species distributions

suggesting a potentially important role of niche partitioning in

tropical forest structure and dynamics [2–7].

Recently, there has been substantial emphasis on functional

traits, particularly foliar traits, in the segregation of species across

resource gradients [8–12]. The ‘leaf economics spectrum’

[hereafter LES; 13] is a plant strategy axis that forms a continuum

of variation from plants having fast returns on investment of

nutrients and dry mass (i.e., high physiological rates, nutrient

concentrations and low leaf mass per area) to a slow return, stress-

tolerant strategy characterized by the opposite set of traits. This

spectrum is captured in a single principal component explaining

74% of variation in six key foliar traits within a global data set

[GLOPNET; 13].

Similar analyses of smaller, more local datasets have shown

variation in the trait relationships that comprise the LES [14–17].

When considering this spectrum at the community scale, in the

absence of climatic variation, it is reasonable to postulate that the

relative importance of traits or the suite of traits contributing

strongly to this primary axis of variation may change depending

upon the resources that are most limiting in the system in question.

Patterns of leaf trait variation may be expected to be most

divergent from global patterns where strong gradients of resource

availability exist resulting in habitat partitioning among species.

For example, within lowland tropical forests, traits comprising the

LES should correspond with the shade tolerance continuum that is

critical to forest regeneration dynamics [17–22]. Soil resources

contributing to species distributions also vary among ecosystems

and may thus alter the relative importance of foliar traits to the

LES. For example, in temperate grassland systems, nitrogen often

drives partitioning [23] whereas in tropical systems, soil phos-

phorus (P) commonly limits plant growth [24–26], and can

accordingly strongly influence partitioning. P mainly derives from

the weathering of soil minerals; consequently, the geologic

substrate and degree of weathering determine the availability of

P for uptake [27]. P availability differs due to local variation in

geology and hydrology and may play a particularly critical role in

species partitioning and regional diversity maintenance in lowland

tropical forests [4,8]. P is critical to a variety of plant functions

[e.g., RuBP regeneration; 28] and is a major component of key

molecules involved in photosynthesis, including phospholipids,

nucleic acids, sugar phosphates, and ATP [29]. Foliar P

concentrations may thus be expected to contribute more to

variation in leaf traits in tropical tree communities characterized

by strong P gradients, compared to global relationships.
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In the present study, we examine the six foliar traits that

comprise the LES [sensu 13] for 16 tree species in a tropical

lowland forest within which strong edaphic gradients exist and

contribute to striking patterns of habitat association [12,30]. Our

main goals are to: (1) test for the presence of the LES (and other

multivariate axes) within a tropical tree community; and (2) test

whether species specialized to contrasting edaphic environments

separate along these axes in a systematic way. We demonstrate

that in lowland tropical forests, the LES describes trait

relationships at the local scale and that this primary axis of

variation corresponds closely with the shade tolerance continuum.

In addition, we show that a second orthogonal axis determined

largely by foliar P concentrations results in near-complete

separation of tree species occupying distinct habitat types within

the forest. We suggest that this ‘leaf edaphic habitat spectrum’ may

be more generally applicable in plant communities characterized

by strong substrate-based resource gradients.

Methods

The Sepilok Forest Reserve (5u109N, 117u569E; SFR), is a

4294 ha gazetted reserve located in Sabah, Malaysian Borneo.

The landscape is topographically variable with alluvial lowlands

punctuated by sandstone ridges (30–90 m a.s.l.); this topography

results in distinct but adjacent floral assemblages, sandstone hill

and lowland dipterocarp forest [31]. Parent material and drainage

varies resulting in lower soil water availability and nutrient

concentrations and greater light availability on sandstone soils

[12,32], which result in differential plant resource use traits

between the two forest types [12]. This pattern is common in the

region [33] and is thought to contribute to high tree species

diversity in Bornean forests [34].

Species selection
Four congeneric/confamilial species pairs were selected con-

sisting of one species specialized to the sandstone soil type and one

to the alluvium. Four generalists and other common unpaired

specialists were also selected to obtain data on a wider range of

common species (16 in total). Sapling selection was restricted to

healthy individuals with unbroken stems and stem height of 0.5–

1.5 m. 15–60 individuals of each species were selected and

uniquely tagged. Species information can be found in the online

supplement (Table S1). The categorization of species as edaphic

generalists or specialists was qualitatively based upon observation

with numerous transects walked on each soil type searching for

‘wrongly placed’ individuals (specialists) or species that were fairly

common on both sandstone and alluvial soil types (generalists) and

corresponds with large plot data for the reserve [35].

Functional trait data collection
We measured all six traits included in the LES: mass-based

photosynthetic and respiration rates (Amass and Rmass, respectively),

leaf mass per area (LMA), leaf N and P concentrations, and leaf

lifespan (LL). For gas-exchange measurements, six individuals per

species were sampled in high light locations (for generalists, this

resulted in 12 sampled individuals; six per soil type). The range of

light environments to which ‘high light’ corresponded was 6–

13 mol m22 d21. Individual sapling light environment was mea-

sured using hemispherical photographs taken directly above the

crown using a Nikon Coolpix 900 and FC-E8 fisheye converter

(Nikon, Tokyo, Japan). Photographs were analyzed using the

program Winscanopy 2001 (Regent Instruments Inc., Québec,

Canada). Using a LI-6400 gas-exchange system (Licor, Inc.,

Lincoln, NE, USA), gas-exchange measurements were made on

recent, fully expanded leaves. All measurements were made before

noon with cuvette conditions maintained at 350 ppm CO2, 60–

80% RH and 25–30uC leaf temperature. Measurements were made

in 2002 at the beginning of a wet spell. Gas-exchange leaves were

harvested, measured for area, dried at 60uC and weighed. Both leaf

area and weight excluded the petiole. For compound-leaved species,

the measured leaflet was sampled. LMA was calculated and used to

convert gas-exchange values to mass-based measures. Leaf tissue,

excluding primary and secondary veins, was finely ground and

samples wet digested using the sulfuric acid-hydrogen peroxide

digest procedure. The digest was analyzed for total N using the

phenol blue reaction employing autoanalysis [36] and P by the

colorimetric molybdenum blue method [37]. To monitor leaf

production, the three most recently expanded leaves on each branch

were labeled with non-toxic permanent marker at the base near the

petiole every two months from September 2001–March 2002 and

again in September and November 2002. Aside from one light-

demanding species (Homolanthus populneus), there was never an

instance when at least one marked leaf could not be found on each

branch (for H. populneus, LL was conservatively estimated at two

months in subsequent analyses). At each census, leaves remaining

from the previous census and new leaves produced were tallied. LL

was estimated using a demographic approach [38]:

L~
Nta

d
z

Nt1{Nta

b

� �
| t2{t1ð Þ

Where L is leaf lifespan, b is leaf production between censuses, d is

leaves dropped between censuses, Nt1 represents initial number of

leaves and Nta represents number of leaves at t1 plus number of

leaves produced between t1 and t2. This calculation provides an

estimate of average leaf longevity based on cumulative leaf

production and deaths.

Additional datasets
To test whether similar patterns exist in other tropical lowland

forests, we searched the literature for datasets from other moist

tropical forest sites for which comparable data on LES traits as

well as quantitative measures of juvenile shade tolerance have

been published. We found two sites: La Chonta, Bolivia [18,39]

and Parque Nacional San Lorenzo (hereafter, San Lorenzo),

Panama [17]. For the La Chonta dataset, all leaf traits

measurements were made on saplings (18) with the exception of

foliar P, which was measured on leaves from adult trees (38). The

shade tolerance metric used in the Bolivian studies was the Crown

Exposure Index (18). For San Lorenzo, we only included the 14

tree species for which shade tolerance was quantified in our

analysis. All leaf trait data were collected for adults. The shade

tolerance index used in the Panamanian study consisted of factor

scores for the first principal component calculated for height

growth and proportional survival of first-year seedlings (17).

Statistical analysis
Analyses followed methods in Wright et al. [13]. Log-10

transformed species trait values were used to ensure normality and

homogeneity of variance. A principal components analysis was run

on the entire data set to assess whether the LES signal was evident.

Generalist species are represented in all analyses twice to quantify

shifts in leaf traits between sandstone and alluvial populations.

Species’ loading scores were then divided by habitat and a

Kruskal-Wallis test was used to assess whether habitat type was a

good predictor of species’ placement along significant axes (loading

data were not normally distributed and transformations failed). A

Soil Preference and LES
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regression analysis was run using the primary axis (the ‘LES’) as

the predictor of species’ whole-plant light compensation point

(WPLCP) taken from Baltzer and Thomas [19]. WPLCP is a

quantitative measure of shade tolerance in which the X-intercept

of the light-growth relationship is estimated for each species and

corresponds with a physiologically and ecologically relevant

minimum light requirement [19]. To test whether similar patterns

exist in other tropical lowland forests, we conducted corresponding

analyses for the two additional moist tropical forest sites. Type II

regression analysis was used to test whether the slopes differed

from unity or the intercepts differed from zero for pairwise

relationships of loading values among sites. Differences in these

relationships would suggest changes in the relative importance of

functional traits among sites. Only five of the six leaf traits were

available for San Lorenzo (no Rmass); to ensure differences in trait

loadings were not simply due to this discrepancy we conducted an

additional PCA for the Sepilok and La Chonta datasets excluding

the Rmaas data. Results of the corresponding regression anayses

can be found in Table S2. Analyses were conducted using R (v.

2.9.0, R Foundation for Statistical Computing).

Results

The PCA resulted in two significant axes, explaining 90.3% of

the variation in the leaf trait data (Table 1; Fig. 1). The first axis

accounted for 73.9% of the variation and corresponded with the

LES of Wright et al. (2004). This axis represents a gradient from

species with high physiological rates and leaf nutrient concentra-

tions and low LMA and leaf lifespan to species having the opposite

traits (Fig. 1). Kruskal-Wallis analysis indicated that the primary

axis of variation showed no relationship to habitat preference

(x2 = 2.29, df = 1, P = 0.1306); however, it correlated with a

quantitative shade tolerance metric, WPLCP (Fig. 2). The

relationship was strengthened by the high value of one light-

demanding species (H. populneus) but persisted when this species

was excluded (r2 = 0.35; P = 0.0095). Both La Chonta and San

Lorenzo demonstrated identical patterns with the first principal

component accounting for 69 and 70% of variation in leaf traits,

respectively (Table 1) and significantly predicting juvenile shade

tolerance metrics (La Chonta: r2 = 0.54; P,0.0001; San Lorenzo:

r2 = 0.39; P = 0.0162). All three sites showed stong pairwise

correlations for trait scores along the first axis (Table 2).

The second significant axis for the Sepilok dataset corresponded

most closely to variation in leaf P concentration, though all traits

with the exception of LMA loaded significantly onto it (Table 1).

This second axis resulted in the near-complete separation of

species based upon the habitat on which they were sampled

(sandstone vs. alluvial; Figure 1; Kruskal-Wallis x2 = 13.72, df = 1,

P = 0.0002). Only the generalist species Macaranga hypoleuca,

growing on alluvial soils, showed an axis 2 value lower than that

found for the sandstone specialist with the highest axis 2 value,

Sindora coriacea. The second principal component was virtually

identical to Sepilok for La Chonta (Tables 1 & 2); however, the

second axis was only marginally significant in La Chonta

(SD = 0.91; Table 1). No significant second axis was detected for

San Lorenzo, although P does load moderately strongly onto this

second axis (Table 1); trait scores for San Lorenzo diverged greatly

from those of Sepilok and La Chonta on this axis (Table 2).

Discussion

Axis 1: the LES and shade tolerance
The primary axis, which corresponds with the LES of Wright et

al. [13] proved to be a good predictor of a quantitative measure of

shade tolerance, the whole-plant light compensation point

[WPLCP; 19]. This finding is in keeping with previous studies

examining LES-related leaf traits and shade tolerance in tropical

trees [e.g., 17,18,20]. Corresponding analyses for La Chonta and

San Lorenzo demonstrated that the first principal component

was likewise identical to the LES. Correlations between pairs of

axis 1 loadings were very high (Table 2). Furthermore, as was the

case for the Sepilok dataset, the first component was a signifi-

cant predictor of available measures of juvenile light require-

ments for each site. This provides strong evidence for a functional

linkage between foliar trait variation comprising the LES and

minimum light requirements in tropical forest trees, consistent

with the theory that trees that evolved to regenerate in the light-

limited environment of a forest understory employ a conservative

strategy to ‘pay back’ leaf construction costs through slow turnover

rates and long residence times of key nutrients such as nitrogen

[13,21].

At Sepilok, there are differences in the understory light

environment associated with soil variation, with the sandstone

understory having slightly greater light availability due to the

Table 1. Principal components analysis of leaf economics
traits for Sepilok (16 species).

Site Trait Component 1 Component 2

Sepilok Forest,
Malaysia

Variation
explained (%)

73.9 16.4

log Amass 20.457 0.143

log Rmass 20.425 0.345

log LL 0.450 20.137

log LMA 0.418 0.020

log N 20.437 20.187

log P 20.204 20.898

La Chonta, Bolivia Variation
explained (%)

68.5 14.0

log Amass 20.472 20.099

log Rmass 20.440 0.172

log LL 0.403 20.170

log LMA 0.442 20.173

log N 20.413 20.108

log P 20.237 20.943

Parque Nacional San
Lorenzo, Panama

Variation
explained (%)

69.7 15.9 (ns)

log Amass 0.521 0.243

log LL 20.393 20.714

log LMA 20.507 0.057

log N 0.401 20.409

log P 0.412 20.510

Corresponding analyses for La Chonta (35 species; 18, 38) and San Lorenzo (14
species; 17). All analyses were performed on log-10 transformed variables
across species. Two significant components explained a cumulative variation of
90.3% in Sepilok. Variation explained by individual components is provided for
each trait. In the corresponding analysis for La Chonta, the second axis was
marginally significant (standard deviation of 0.913); combined these two axes
explained 82.5% of trait variation. Corresponding analysis using five of six traits
(Rmass not available) from San Lorenzo; PCA axis 2 was not significant. In all
three tables, leaf lifespan and LMA positively correlate with axis 1 while
remaining traits are negatively correlated with axis 1. Foliar P concentration
loads very strongly onto the second axis compared with all other significant
traits in the Malaysian and Bolivian forests but less so in the Panamanian forest.
doi:10.1371/journal.pone.0013163.t001
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lower basal area and canopy stature [19,35]. Baltzer and Thomas

[19] demonstrated differences between congeneric species pairs in

WPLCP with sandstone species having slightly higher light

requirements. It is therefore reasonable to hypothesize that there

might be some separation of the two groups along the primary

axis; however, in spite of the slight difference in WPLCP detected

using the phylogenetic framework described above, there were no

differences detected in traits associated with the LES (Fig. 1).

Axis 2: Edaphic specialization and phosphorous
We demonstrate a second significant axis to the LES onto which

foliar P loaded most strongly, resulting in near-complete

separation of species associated with two distinct edaphic habitats

at Sepilok. Sandstone ridges show much lower P availability than

the alluvial valleys at this site [32]. Similarly, Paoli [8]

demonstrated that foliar P was the strongest predictor of habitat

associations in eight closely related Shorea species an Indonesian

Figure 1. Prinicipal components analysis of the six key leaf economics traits (log-10 transformed). Two significant axes were detected, the
first corresponding with the LES with Amass, Rmass, %N and %P loading negatively along the first axis and LMA and LL loading positively (see Table 1 for
loading values). The second significant axis corresponds primarily with foliar P concentrations, which load positively with the second axis. Species’ loading
values are represented on the graph according to the habitat on which they were sampled (closed symbols, alluvial; open symbols, sandstone) and their
behaviour as specialists (circles) or generalists (triangles). The two habitat classifications separated significantly along the second axis (Kruskal-Wallis
x2 = 13.72, df = 1, P = 0.0002). Generalist species are represented by two data points each: one from the population on the alluvial soils (black triangles) and
one from the sandstone soils (white triangles) and connected by a dashed line to demonstrate shifts in loading values between populations.
doi:10.1371/journal.pone.0013163.g001

Soil Preference and LES
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lowland forest. The patterns observed in the present study may

thus be broadly applicable to P-limited tropical forests that show

strong resource gradients and clearly defined habitat associations.

Initially, we hypothesized that foliar P should play a prominent

role in the LES due to P-limitation in tropical lowland forests [25],

its critical role in a wide range of physiological functions in plants,

and its contribution as a component of molecules such as nucleic

acids, phospholipids, ATP and sugar phosphates [29]. If the

contribution of foliar P to the LES was primarily through its

linkage to photosynthesis, we would expect P to load much more

strongly on the primary axis, which it does not; in fact it shows the

weakest loading of all traits examined. Previous studies show that

the structure of the LES is modified by P via changes in N-Amass

relationship, but that P does not contribute directly as a primary

determinant of photosynthetic rates, even in P-limited tropical

forests [16, but see 40].

Why then might P be loading orthogonally to the LES in our

analysis? The separation of species associated with sandstone vs.

alluvial soils corresponds with a large difference in P availability

between the two soil types but total soil N likewise is lower on the

sandstone soils [32].

We suggest that the strong loading of foliar P onto the second

axis may be due to the availability of interchangeable forms of

each nutrient and the relative energetic and carbon costs

associated with uptake. There are more interconvertable forms

of N than P available to plants. At Sepilok, nitrate availability is

Figure 2. The relationship between the LES and shade tolerance quantified as the whole-plant light compensation point. The LES
corresponds with species loadings on PCA axis 1. For a description of the axis see Figure 1 and Table 1. Whole-plant light compensation point values
(WPLCP) are from Baltzer and Thomas [19]. Generalist species are represented by two data points each: one from the population on the alluvial soils
(black triangles) and one from the sandstone soils (white triangles) and connected by a dashed line to demonstrate shifts in trait values between
populations. WPLCP could not be estimated for the sandstone population of K. laurina thus only the alluvial population is represented in this figure.
doi:10.1371/journal.pone.0013163.g002

Table 2. Pearson’s correlation and regression coefficients (lower CI, upper CI) for pairwise relationships between principal
components loadings at the three sites.

Slope Intercept Pearson’s r P-value

Axis 1

Sepilok – LaChonta 1.01 (0.92, 1.11) 0.01 (20.03, 0.05) 0.99 ,0.0001

Sepilok – San Lorenzo 0.92 (0.62, 1.36) 0.03 (20.14, 0.20) 0.98 0.0047

LaChonta – San Lorenzo 0.91 (0.67, 1.22) 0.02 (20.10, 0.14) 0.99 0.0019

Axis 2

Sepilok – LaChonta 1.08 (0.79, 1.48) 0.08 (20.06, 0.22) 0.97 0.0011

Sepilok – San Lorenzo 1.01 (0.31, 3.30) 20.06 (20.78, 0.66) 0.59 0.2918

LaChonta – San Lorenzo 0.99 (0.29, 3.46) 0.01 (20.78, 0.79) 0.49 0.3971

doi:10.1371/journal.pone.0013163.t002

Soil Preference and LES
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lower in sandstone soils while ammonium concentrations are

higher [32]. Therefore it may be the case that N is not as strongly

limiting as P in this forest, as suggested by high N:P ratios (15:1

and higher; data not shown). N uptake is thought to be closely

linked to demand whereas P uptake frequently continues even

when P is not limiting [41–43]. Therefore we expect foliar N to

correspond closely with the LES; the proteins necessary to support

high photosynthetic and respiration rates have high N demands

[44]. With respect to P uptake, plants only have direct access to

dissolved phosphate [43], which is replenished by slow diffusion.

As the rooting zone becomes devoid of dissolved phosphate, root

proliferation or enhanced reliance on mycorrhizal associations and

root exudates become necessary to maintain P supply [43]. Root

proliferation is considered a primary mechanism for increasing

uptake on P-deficient soils whereas on richer soils, up-regulating

physiological activity can increase uptake rates [45,46]; however,

root proliferation is costly both in terms of C and N. Recent

studies show that in P-deficient soils, the costs of P uptake are very

high and rather than maintaining high rates of P uptake, that

increased efficiency in resource use is a better strategy [47,48].

Improved P-use efficiency (i.e., higher cumulative carbon

assimilation per unit P investment over the lifetime of the leaf)

may be achieved by such means as longer P residence times and

preferential allocation of P to photosynthetic tissues (e.g., 46). The

clear separation of sandstone vs. alluvial specialists may thus

correspond to inherent differences in P use between the two

groups that are not directly linked with the LES, but further work

is necessary to directly test for such differences.

Sepilok, and Bornean forests more generally, display marked

patterns of habitat association driven by edaphic characteristics

[30,33]. A second axis of leaf trait variation might be expected to

be strongly expressed under these conditions. Conversely, if

species distributions at the local scale are not largely being driven

by edaphic limitations, then the contribution of that second axis

may disappear. By comparing our findings with LES analyses of

La Chonta and San Lorenzo, we can examine these predictions.

Loadings of traits onto the second axis were virtually identical for

Sepliok and La Chonta. At San Lorenzo, in contrast, all

available traits loaded similarly onto the primary axis and no

signficant second axis was detected. This qualitatively supports

our predictions: soils in Sepilok show the strongest habitat

differences in P associated with distinct soils on sandstone ridges

and alluvial valleys [32] with correspondingly strong patterns of

habitat specificity [35]. La Chonta shows somewhat less

pronounced edaphic variability, with anthropogenic dark earths

enriched in P [49] that impact soil-vegetation relationships (Peña-

Claros et al., submitted). In contrast, recent analyses for Barro

Colorado Island, another Panamanian moist lowland forest

proximate to San Lorenzo with substantial species overlap, show

relatively weak effects of soil P levels on community niche

structure [3].

Another interesting feature of the Sepilok analysis is the

placement of generalist species along the second axis (Fig. 1).

For both sandstone and alluvial habitats, the generalist species

occupying those habitats cluster closely with specialists associated

with each habitat. This is in keeping with the idea that generalist

species are more plastic in their responses to soil resource

availability [50] or that some degree of local adaptation has

occurred. However, it could also simply be an indication that

individuals will take up resources when available (e.g., high P

values in generalists occurring on the alluvium) and that sandstone

specialists may well be capable of increased P uptake were they to

establish and survive on the P-rich alluvial soils. In other words,

plasticity could be underlying observed patterns. However,

evidence from a reciprocal transplant experiment involving two

alluvial and two sandstone specialists at Sepilok suggests that

adaptive responses to soil conditions can be pronounced. Although

sandstone species showed small increases in foliar P when grown

on alluvial soils, foliar P of alluvial specialists was almost double

that of the sandstone specialists [32]. When the two groups were

grown on sandstone, alluvial specialists maintained higher foliar P

concentrations [32] suggesting an important role of differential P-

use efficiencies. Whole-plant or cumulative P-use efficiencies may

similarly differ among specialists and generalists such that

sandstone specialists have a competitive advantage over generalists

on P-deficient soils.

In conclusion, our data indicate that the first axis of the leaf

economics spectrum (LES) describing patterns of trait covariation

in leaf functional ecology corresponds to shade tolerance as

quantified by the whole-plant light compensation point, and that

this relationship is consistent across tropical lowland forests.

However, foliar P is relatively uncorrelated with the first LES axis

at sites where soil P strongly influences distribution of vegetation,

and instead correlates with a ‘‘leaf edaphic habitat spectrum’’ axis

that is quite strong in a tropical tree community characterized by

high habitat differentiation among species. Further tests of this leaf

edaphic habitat spectrum across substrate-based resource gradi-

ents are necessary to assess its generality in tropical forests and

other plant communities.

Supporting Information

Table S1 Study species with families, authorities and habitat on

which sampling occurred. Asterisks following habitat type indicate

pioneer species. Two habitats were examined in the present study:

sandstone-derived ridges having both lower water and nutrient

availability (sandstone) and moist, nutrient-rich alluvial valleys

(alluvial). Species showing no preference with respect to habitat

were classified as generalists and have values on both soil types in

the table below; specialists have data for only the habitat on which

they are found. A representative voucher specimen for each

species is indicated (numbers are the herbarium sheet numbers at

the Forest Research Center, Sepilok).

Found at: doi:10.1371/journal.pone.0013163.s001 (0.07 MB

DOC)

Table S2 Pearson’s correlation and regression coefficients (lower

CI, upper CI) for pairwise relationships between principal

components loadings at the three sites. For these analyses we

used only the five traits available for the San Lorenzo dataset:

Amass, LMA, leaf lifespan, %N, and %P.

Found at: doi:10.1371/journal.pone.0013163.s002 (0.03 MB

DOC)

Acknowledgments

Thanks to the Economic Planning Unit of the Prime Minister’s

Department and the Forest Research Centre, Sepilok for permitting this

research. A. Spring and R. Yudat assisted in field work, Y.-X. Teng

assisted with nutrient analysis, and V. Timmer provided lab space and

analytical advice. L. Poorter, K. Kitajima, H. Bruun and anonymous

reviewers provided earlier feedback.

Author Contributions

Conceived and designed the experiments: JLB SCT. Performed the

experiments: JLB. Analyzed the data: JLB. Contributed reagents/

materials/analysis tools: SCT. Wrote the paper: JLB SCT.

Soil Preference and LES

PLoS ONE | www.plosone.org 6 October 2010 | Volume 5 | Issue 10 | e13163



References

1. Chase JM, Leibold M (2003) Ecological niches: linking classical and
contemporary approaches. Chicago: University of Chicago Press. 212 p.

2. Clark DB, Palmer MW, Clark DA (1999) Edaphic factors and the landscape-
scale distributions of tropical rain forest trees. Ecology 80: 2662–2675.

3. John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, et al. (2007) Soil
nutrients influence spatial distributions of tropical tree species. Proceedings of

the National Academy of Sciences of the United States of America 104:

864–869.

4. Paoli GD, Curran LM, Zak DR (2006) Soil nutrients and beta diversity in the

Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain
forest trees. Journal of Ecology 94: 157–170.

5. Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MEC, et al. (2003)
Habitat association among Amazonian tree species: a landscape-scale approach.

Journal of Ecology 91: 757–775.

6. Ashton PS (1964) Ecological studies in the mixed dipterocarp forests of Brunei
State. Oxford Forestry Memoirs 8.

7. Davies SJ, Palmiotto PA, Ashton PS, Lee HS, Lafrankie JV (1998) Comparative
ecology of 11 sympatric species of Macaranga in Borneo: tree distribution in

relation to horizontal and vertical resource heterogeneity. Journal of Ecology 86:

662–673.

8. Paoli GD (2006) Divergent leaf traits among congeneric tropical trees with

contrasting habitat associations on Borneo. Journal of Tropical Ecology 22:
397–408.

9. Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based
tree community assembly in an Amazonian forest. Science 322: 580–582.

10. Santiago LS, Kitajima K, Wright SJ, Mulkey SS (2004) Coordinated changes in

photosynthesis, water relations and leaf nutritional traits of canopy trees along a
precipitation gradient in lowland tropical forest. Oecologia 139: 495–502.

11. Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology,
structure and nutrient content between species of high- and low-rainfall and

high- and low-nutrient habitats. Functional Ecology 15: 423–434.

12. Baltzer JL, Thomas SC, Nilus R, Burslem DFRP (2005) Edaphic specialization

in tropical trees: Physiological correlates and responses to reciprocal transplan-

tation. Ecology 86: 3063–3077.

13. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, et al. (2004) The

worldwide leaf economics spectrum. Nature 428: 821–827.

14. Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, et al. (2005)

Assessing the generality of global leaf trait relationships. New Phytologist 166:

485–496.

15. Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, et al. (2005)

Modulation of leaf economic traits and trait relationships by climate. Global
Ecology and Biogeography 14: 411–421.

16. Reich PB, Oleksyn J, Wright IJ (2009) Leaf phosphorus influences the
photosynthesis-nitrogen relation: a cross-biome analysis of 314 species.

Oecologia 160: 207–212.

17. Santiago LS, Wright SJ (2007) Leaf functional traits of tropical forest plants in
relation to growth form. Functional Ecology 21: 19–27.

18. Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance
across 53 rain forest species. Ecology 87: 1733–1743.

19. Baltzer JL, Thomas SC (2007) Determinants of whole-plant light requirements
in Bornean rain forest tree saplings. Journal of Ecology 95: 1208–1221.

20. Kitajima K (1994) Relative importance of photosynthetic traits and allocation

patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia
98: 419–428.

21. Sterck FJ, Poorter L, Schieving F (2006) Leaf traits determine the growth-
survival trade-off across rain forest tree species. American Naturalist 167:

758–765.

22. Kitajima K, Poorter L (2008) Functional basis for resource niche partitioning by

tropical trees. In: Carson WP, Schnitzer SA, eds. Tropical Forest Community

Ecology. Oxford: Blackwell Science. pp 160–181.

23. Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, et al. (2002) Functional

traits, productivity and effects on nitrogen cycling of 33 grassland species.
Functional Ecology 16: 563–574.

24. Baker TR, Burslem DFRP, Swaine MD (2003) Associations between tree

growth, soil fertility and water availability at and regional scales in Ghanian
tropical rain forest. Journal of Tropical Ecology 19: 109–125.

25. Vitousek P (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical
forests. Ecology 65: 285–298.

26. Mirmanto E, Proctor J, Green J, Nage L, Suriantata (1999) Effects of nitrogen
and phosphorous fertilization in a lowland evergreen rainforest. Philosophical

Transactions of the Royal Society of London 354: 1825–1829.
27. Walker TW, Seyers JK (1976) The fate of phosphourous during pedogenesis.

Geoderma 15: 1–19.

28. Campbell CD, Sage RF (2006) Interactions between the effects of atmospheric
CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.).

Plant Cell and Environment 29: 844–853.
29. Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate

availability. Annual Review of Plant Physiology 24: 225–252.

30. DeWalt SJ, Ickes K, Nilus R, Harms KE, Burslem DFRP (2006) Liana habitat
associations and community structure in a Bornean lowland tropical forest. Plant

Ecology 186: 203–216.
31. Fox JED (1973) Kabili-Sepilok Forest Reserve. Sabah Forest Record No. 9.

Kuching, Sarawak: Borneo Literature Bureau.

32. Dent D (2004) The mechanistic basis of habitat specialisation in dipterocarps.
Aberdeen: University of Aberdeen Department of Plant and Soil Sciences.

33. Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, et al. (2004) Soil-
related habitat specialization in dipterocarp rain forest tree species in Borneo.

Journal of Ecology 92: 609–623.
34. Potts MD, Ashton PS, Kaufman LS, Plotkin JB (2002) Habitat patterns in

tropical rain forests: a comparison of 105 plots in Northwest Borneo. Ecology 83:

2782–2797.
35. Nilus R (2004) Effect of edaphic variation on forest structure, dynamics, diversity

and regeneration in a lowland tropical rain forest in Borneo. Aberdeen:
University of Aberdeen Department of Plant and Soil Science.

36. Schuman GE, Stanley MA, Knudsen D (1973) Automated total nitrogen

analysis of soil and plant samples. Soil Science Society of America Proceedings
37: 480–481.

37. Allen SE (1974) Chemical analysis of ecological material; Allen SE, editor. New
York, USA: John Wiley.

38. Williams K, Field CB, Mooney HA (1989) Relationships among leaf
construction cost, leaf longevity, and light environment in rain-forest plants of

the genus Piper. The American Naturalist 133: 198–211.

39. Poorter L (2009) Leaf traits show different relationships with shade tolerance in
moist versus dry tropical forests. New Phytologist 181: 890–900.

40. Raaimakers D, Boot RGA, Dijkstra P, Pot S, Pons T (1995) Photosynthetic rates
in relation to leaf phosphorous content in pioneer versus climax tropical

rainforest trees. Oecologia 102: 120–125.

41. Gusewell S (2005) Responses of wetland graminoids to the relative supply of
nitrogen and phosphorous. Plant Ecology 176: 36–55.

42. Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake.
Plant Physiology 105: 3–7.

43. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorous uptake by plants:
from soil to cell. Plant Physiology 116: 447–453.

44. Ryan MG (1995) Foliar maintenance respiration of subalpine and boreal trees

and shrubs in relation to nitrogen content. Plant Cell and Environment 18:
765–772.

45. Caldwell MM, Dudley LM, Lilieholm B (1992) Soil solution phosphate, root
uptake kinetics and nutrient acquisition: implications for a patchy soil

environment. Oecologia 89: 305–309.

46. Jackson RB, Caldwell MM (1996) Integrating resource heterogeneity and plant
plasticity: modeling nitrate and phosphate uptake in a patchy soil environment.

Journal of Ecology 84: 891–903.
47. Gleason SM, Read J, Ares A, Metcalfe DJ (2009) Phosphorous economics of

tropical rainforest species and stands across soil contrasts in Queensland,
Australia: understanding the effects of soil specialization and trait plasticity.

Functional Ecology 23: 1157–1166.

48. Espeleta JF, West JB, Donovan LA (2009) Tree species fine-root demography
parallels habitat specialization across a sandhill soil resource gradient. Ecology

90: 1773–1787.
49. Paz-Riviera C, Putz FE (2009) Anthropogenic soils and tree distributions in a

lowland forest in Bolivia. Biotropica 41: 665–675.

50. Van Tienderen PH (1991) Evolution of generalists and specialists in spatially
heterogeneous environments. Evolution 45: 1317–1331.

Soil Preference and LES

PLoS ONE | www.plosone.org 7 October 2010 | Volume 5 | Issue 10 | e13163



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


