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Abstract

Aims

The neutral theory of biodiversity provides a powerful framework for

modeling macroecological patterns and interpreting species assemb-

lages. However, there remain several unsolved problems, including

the effect of relaxing the assumption of strict neutrality to allow for

empirically observed variation in vital rates and the ‘problem of

time’—empirically measured coexistence times are much shorter

than the prediction of the strictly neutral drift model. Here, we de-

velop a nearly neutral model that allows for differential birth and

death rates of species. This model provides an approach to study spe-

cies coexistence away from strict neutrality.

Methods

Based on Moran’s neutral model, which assumes all species in a com-

munity have the same competitive ability and have identical birth

and death rates, we developed a model that includes birth–death

trade-off but excludes speciation. This model describes a wide range

of asymmetry from strictly neutral to nearly neutral to far from neutral

and is useful for analyzing the effect of drift on species coexistence.

Specifically, we analyzed the effects of the birth–death trade-off on

the time and probability of species coexistence and quantified the

loss of biodiversity (as measured by Simpson’s diversity) due to drift

by varying species birth and death rates.

Important Findings

We found (i) a birth–death trade-off operating as an equalizing force

driven by demographic stochasticity promotes the coexistence of

nearly neutral species. Species near demographic trade-offs (i.e. fit-

ness equivalence) can coexist even longer than that predicted by the

strictly neutral model; (ii) the effect of birth rates on species coexis-

tence is very similar to that of death rates, but their compensatory

effects are not completely symmetric; (iii) ecological drift over time

produces a march to fixation. Trade-off-based neutral communities

lose diversity more slowly than the strictly neutral community, while

non-neutral communities lose diversity much more rapidly; and (iv)

nearly neutral systems have substantially shorter time of coexistence

than that of neutral systems. This reduced time provides a promising

solution to the problem of time.
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INTRODUCTION

One of themost debated questions in the neutral theory of bio-

diversity is how long can neutral species coexist? Under the

assumption of strict neutrality, in which species in a commu-

nity are assumed to have exactly the same vital rates, Hubbell

(2001) showed that species can coexist for a very long time,

long enough for high species diversity to bemaintained by spe-

ciation alone. This coexistence is not maintained by the ability

of species to compete more effectively when rare but by the

stochasticity of ecological drift. The introduction of drift as

an explanation of species assemblages, as opposed to various

models of niche partitioning (Tokeshi 1999), is arguably

the most significant contribution of neutral theory. This con-

tribution has, however, been incisively debated on several

fronts. Zhang and Lin (1997) first questioned the fragility of

the coexistence of neutral species by analytically showing that

a small departure from the assumption of equal birth rate

would dramatically reduce the time of coexistence. Along this

vein, Yu et al. (1998) demonstrated, by simulation, a similar
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consequence for the violation of equal death rate. Subsequent

studies have extended the work of Zhang and Lin (1997) and

Yu et al. (1998) by investigating the effect of non-neutrality on

community diversity patterns (species-abundance and species-

area curves). Fuentes (2004) first extended Yu et al.’s work

by simulating a spatially explicit nearly neutral system by con-

sidering slight differences in the viability of individuals. In

Fuentes’ simulation, the mortality rates of individuals are

no longer equal but are determined by small differential via-

bilities generated by deleterious versus beneficial mutation.

This nearly neutral community reduces species richness and

produces species-abundance and species-area curves very dif-

ferent from the strictly neutral model of Hubbell. Similar

results have also been reported by Zhou and Zhang (2008) that

simulated the effects of differential birth rates (as proposed by

Zhang and Lin 1997) on species-abundance distributions.

These models depart from Hubbell’s neutral model by only

considering species difference in either birth rate or death rate,

but not both, although in reality species differ in both rates.

The effect of a birth–death trade-off on species coexistence

has not yet been addressed.

As a significant step toward this problem, based on the lottery

model of demographic trade-off, Lin et al. (2009) showed that

although both a strictly neutral community and trade-off-based

communities produce log-series species-abundance distribu-

tions, species richness is higher in trade-off communities. Sim-

ilarly, Ostling (2011) and Zhang et al. (2012) relaxed Hubbell’s

original neutral model by considering fitness equivalence and

found that high species diversity can result from an interspecific

birth–death trade-off. Parsons and Quince (2007) considered

a density-dependent ‘quasi-neutral’ model and analyzed the ef-

fect of population fluctuation on species coexistence. In these

studies, fitness equivalence is defined as Bi/Di = Bj/Dj = c, where

B and D are the birth and death rates for species i and j. There-

fore, species having higher birth and death rates are considered

ecologically equivalent to species of lower birth and death rates.

Unlike Zhang and Lin (1997) and Yu et al. (1998), the trade-off-

based models of Lin et al. (2009), Ostling (2011) and Zhang et al.

(2012) are still neutral by definition (Hubbell 2005), and the

strictly neutral model is the special case of Bi = Bj and Di = Dj.

Inspired by the theory of nearly neutral alleles in population

genetics that extends the neutral theory of molecular evolu-

tion (Ohta 1992; Ohta and Gillespie 1996), in this study, we

propose a nearly neutral model that describes a spectrum of

communities ranging from strictly neutral to non-neutral.

The model is derived based on two seminal works in popula-

tion genetics: Moran (1962) and Karlin and McGregor (1967),

and it takes account of differential birth and death rates. Al-

though our model can describe a wide range of asymmetry

(from strictly neutral to nearly neutral to non-neutral), it will

become clear that the model behaviors are very similar at

nearly neutral and far from neutral states. We therefore call

it a nearly neutral model.

Similar to Zhang and Lin (1997) and Yu et al. (1998) but dif-

ferent from Lin et al. (2009), Ostling (2011) and Zhang et al.

(2012), our model is non-neutral by definition. It differs from

the previous models in two important aspects. First, unlike the

previous non-neutral models which only consider the asym-

metry in either birth rates (Zhang and Lin 1997; Zhou and

Zhang 2008) or death rates (Fuentes 2004; Yu et al. 1998),

the simultaneous consideration of differential birth and death

rates allows us to investigate the effect of a demographic trade-

off on species coexistence away from the neutral state, which is

otherwise impossible to do. Second, unlike the

fitness-equivalence neutral models of Lin et al. (2009), Ostling

(2011) and Zhang et al. (2012), what our model considers is

a general case inwhich Bi/Di and Bj/Dj are not necessarily equal

but can vary independently. We use this model to examine the

joint effect of biased birth and death rates on the probability of

species extinction and the time of coexistence and show that

a demographic trade-off can equalize and contribute to species

coexistence without invoking stabilizing mechanisms. We

then investigate the effect of ecological drift on the loss of di-

versity under non-neutral conditions. We conclude the study

by discussing the consequences of the nearly neutral theory,

including the ‘problem of time’—the age of species predicted

by ecological drift is simply too long to be realistic (Lande et al.

2003; Nee 2005; Ricklefs 2006; Rosindell et al. 2010).

THE NEARLY NEUTRAL MODEL

Our departure point is Moran’s neutral model, assuming all

species in a community have the same competitive ability

and have identical birth and death rates (Moran 1962). Mor-

an’s model is long standing, of which Hubbell’s zero-sum

model is a variant (Etienne and Alonso 2007; Leigh 2007). Be-

cause they differ little, we make no distinction between them.

Also, because the focus of this study is to investigate species

coexistence, to simplify the analysis, we only consider a system

consisting of two competing species, as many competition

models do. Under the assumption that the two species have

the same per capita birth and death rates and within a suffi-

ciently small time step, the transition probabilities that the

abundance of the focal species increases by one, decreases

by one, or remains unchanged are, respectively (Hubbell

2001; Moran 1962):�
pj;j +1 =

N � j

N

j

N

pj;j�1 =
j

N

N � j

N

pj;j =1 � pj;j+ 1 � pj;j� 1

;
ð1Þ

where N is the total number of individuals (the community

size), j is the number of individuals of the focal species (species

1) at time t and N � j is the abundance of the other species

(species 2). The first term, N�j
N
, on the right-hand side of pj,j+1

is the probability that a death occurs in species 2. The second

term, j
N
, is the probability that a birth occurs in species 1. The

transition probability (pj,j+1) can therefore be interpreted as
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a joint probability of two events: first sample one individual

from species 2 (to die) and then sample a second individual

from species 1 (to reproduce). The random walk of model 1

describes the abundance dynamics of species with same com-

petitive ability—the probabilities of moving one step to the

right or to the left are equal:
Pj;j+1
Pj;j�1

=1.

Model 1 can be generalized by relaxing the assumption of

neutrality. This generalized model takes account of differential

birth and death rates so that asymmetry in the theory is

allowed. Adopting the approach proposed by Karlin and

McGregor (1967) to model 1, we obtain an asymmetric model:�
pj; j + 1 =

N � j

N � j+ dj

bj

N � j+ bj

pj; j� 1 =
dj

N � j+ dj

N � j

N � j+ bj

Pj; j =1 � pj;j+ 1 � pj;j� 1

; ð2Þ

where the differential birth and death factors are, respectively,

denoted by b and d. When b = 1, the two species have the same

birth rate (B1 = B2); b > 1 means that the focal species has

a higher birth rate than species 2 (B1 > B2) and b < 1means that

species 1 has a lower birth rate. Similar interpretations apply to

death factor, d. Note that when d = 1 and b 6¼ 1, Equation (2)

reduces to Zhang and Lin’s model (1997), when b = 1 and d 6¼ 1,

it is equivalent to Yu et al.’s (1998) model and when d = 1 and

b = 1, it further becomes Moran–Hubbell’s zero-sum model 1.

The transition probabilities in Equation (2) are easy to derive

(Karlin and McGregor 1967). They are arrived by considering

birth and death as sampling events. Let us take the two terms

in pj,j+1 as an example. Because of the species-biased death

rates, we denote D1 as the probability a death occurs in species

1 (with abundance = j) and D2 as the probability a death occurs

in species 2 (with abundance = N� j). Because the death must

either occur in species 1 or 2, D1 + D2 = 1 (D1 = D2 for the neu-

tral model). If we randomly sample one individual from the

community (to die), the probability that the sampled individ-

ual is species 2 is
D2ðN�jÞ

D1j+D2ðN�jÞ. This leads to
N�j

N�j+dj
, where d=D1

D2
. To

derive the second term, we denote B1 as the probability of sam-

pling an individual from species 1 and B2 the probability of

sampling an individual from species 2. If we randomly sample

one individual from the community (to give birth), then the

probability that the sampled individual belongs to species 1

is B1j
B1 j+B2ðN�jÞ, leading to bj

N�j+bj
, where b = B1

B2
. All the other terms

in Equation (2) can be derived in the same manner. A salient

feature of this nearly neutral model is that drift in abundance is

no longer neutral but is biased, determined by the ratio of

b and d:
Pj;j+1
Pj;j�1

= b
d
, which is considered as a measure of fitness in-

equality (sensu Chesson 2000). Species 1 and 2 are said to have

identical fitnesses if d = b, which is model 1.

What Equation (2) differs from Equation (1) is that the chan-

ces to walk to the right and to the left are no longer equal but

determined by the difference in species competitive ability (as

defined by b and d). Competitive exclusion in the system occurs

if species 1 starting from j is finally absorbed into state 0 (species

2 wins) or N (1 wins). We use two functions to investigate the

effects of a birth–death trade-off on the outcome of competition.

The first function is the probability of absorption, defined as

the probability that the focal species starting from j will go ex-

tinct (Taylor and Karlin 1998):

ej =

+
N�1

i= j

qi

1 + +
N� 1

i=1

qi

; 0< j<N; ð3Þ

where qi =
q1q2 ...qi
p1p2 ...pi

, 0 < i < N. pi and qi are the transition probabil-

ities, defined by pi = pi;i+1 and qi = pi;i�1. The extinction probabil-

ity canbe analytically derivedby substitutingEquation (2) into (3):

ej =

(
ðd=bÞj

h
1 � ðd=bÞN� j

i
1 � ðd=bÞN

b 6¼ d:

N � j

N
b= d

ð4Þ

Note that in Lin et al. (2009), only the probabilities for

b = d are considered (e.g. see Fig. 1 of Lin et al. 2009). This

study generalizes the previous results by considering any ratio

of b/d.

The second function is the time to absorption. This time can

be measured either by relative time or absolute time. The rel-

ative time is defined as the average number of steps for the

focal species traveling from j to either 0 or N. It can be derived

following the procedure of Taylor and Karlin (1998):

tj =
�
1 + +

j� 1

i=1

qi
� +

N� 1

i=1

Ri

1+ +
N�1

i=1

qi

� +
j� 1

i=1

Ri; 1<j<N; ð5Þ

where Ri =
1
pi

�
1+ qi

pi�1
+ qiqi�1

pi�1pi�2
+ � � � + qiqi�1...q2

pi�1pi�2...p1

�
: Substituting

Equation (2) into (5), we obtain

tj =

(
=

1

1 � d=b"
1 � ðd=bÞj

1 � ðd=bÞN
+

N�1

i=1

1

pi

�
1 �

�
d

b

�N � i�

� +
j�1

i=1

1

pi

�
1 �

�
d

b

�j� i�#
b 6¼ d

=
j

N
+

N� 1

i=1

N � i

pi
� +

j�1

i=1

j � i

pi
b= d

ð6Þ

The absolute time to extinction is the actual time for the focal

species traveling from j to either 0 or N state. The derivation of

this absolute time requires reformulation of Equation (2) and can

only be done for the case of fitness equivalence, as given in

Appendix 1. Because relative time is most commonly used in

the literature (Ewens 2004; Hubbell 2001; Zhang and

Lin 1997) and is alsomore useful to present the concept of nearly

neutral theory, in the rest of this study, relative time is used.
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Ecological drift is the only force regulating species coexis-

tence in models 1 and 2. It causes the loss of species and over

time produces a march to fixation. A classical model of popu-

lation genetics is that genetic drift drives the loss of alleles at

the rate of Ht = H0

�
1� 1

N

�t
, where Ht is the heterozygosity in

population generics at time t and N is population size. This

model can be generalized to quantify the effect of ecological

drift on species diversity. Considering a lottery model of strictly

neutral species (i.e. all species have the same annual death rate

D and the same annual birth rate B), we derived the effect of

ecological drift on the loss of species diversity as (Appendix 2)

Ht =H0

�
1 � 2D � D2

N

�t

; ð7Þ

where Ht is the Simpson diversity index (i.e. heterozygosity) at

time t. It is clear that under ecological drift, communities are

bound to fixation over time, resulting in HN = 0. Note that

Equation (7) is a general model that applies to communities

of multiple species, not just two species.

We conducted simulations based on the lotterymodel to eval-

uate the effect of drift on non-neutral communities by varying

species birth and death rates. The lottery model describes the

Figure 1: effects of different birth (b) and death (d) rates on the extinction probability of the focal species for three initial states j = 10 (a, b),

50 (c, d) and 90 (e, f) for model 2. The right-hand panels are the contour plots of their left-hand 3D plots.
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same drift process of model 2 but is easier to programwhen deal-

ing with multiple species (Lin et al. 2009). The detail of the sim-

ulation algorithm is described in Appendix 3. To sketch the

algorithm,we started off with communities of 100 equally abun-

dant species with community size = 10 000 individuals. Thus,

H0 = 100/101 (calculated from sampling without replacement).

To generate the non-neutral communities, for each species, we

first chose a death rate D from a uniform distribution, U(0, 1).

The birth rate B for that species is then defined as B ; N(D,

r2) and B > 0. Note that here, without loss of generality, the birth

rates of species are scaled to lie also between 0 and 1. In this

study, we present results for four scenarios with r = 0.01,

0.001, 0 (trade-off communities) and a strictly neutral configu-

rationwith the death rateD = B = 0.5 for each species, since each

simulated community has an average death rate of 0.5 at start. In

total, the simulation took 100 runs. For each run, the observation

time is 60 000 birth–death cycles.

RESULTS

We analyzed the combined effects of biased birth (b) and death

(d) rates on ej and tj. In the following evaluations, N = 100 was

used. Larger N can be used, but the summation term involving

ðd=bÞx in the first equation of Equation (6) causes numerical

overflow. N = 8 or 16 are commonly used in numerical evalua-

tions of Hubbell (2001) due to the computation problem. Exper-

imentation with other N did not change the qualitative results.

To evaluate the effect of initial state j on ej and tj, we con-

sidered three initial abundances from which the focal species

started: j = 10, 50 and 90 (corresponding to 10, 50 and 90% of

N). In the evaluations, the ranges of b and d were varied from

1 to 1.5. Higher b (d) means the focal species has higher birth

(death) rates than species 2.

The effects of b and d on the extinction probability (ej) of the

focal species are shown in Fig. 1. For small initial j, ej is high

(Fig. 1a). This trend is reversed with the increase of j (Fig. 1c

and e). In all of the three cases, extinction increases with d but

decreases with b. There is a clear trade-off between b and d: the

adverse effect of d is compensated for by b.

Unlike the probability of extinction, which describes the ex-

tinction of the focal species, the time of coexistence as defined

by Equation (6) is the time for which the system wanders be-

fore a species (1 or 2) hits an absorption state (0 or N). The

effects of b and d on the time of coexistence are shown in

Fig. 2. Across j, the coexistence time is highest when j = 50

(half of the community size). With each j, for a fixed b, the

time increases with d to a peak and then decreases (Fig. 2). This

trajectory also applies to the effect of b by fixing d. The peak

ridges shown in Fig. 2 are maintained by the trade-off of

b and d—a high birth rate b is offset by a high death rate d.

However, the trade-offs are not symmetric—b needs to be

slightly higher than d to maintain the ridge when j < N/2

(Fig. 2b) or d slightly higher than b (Fig. 2f). An interesting

result is that the highest coexistence time is not maintained

at b = d = 1 (strictly neutral state) but at the state away from

the strictly neutral around b � d > 1 (along the red lines of Fig.

2b, d and f) that represents a neutral model of approximate

fitness equivalence. Note coexistence time is the same, as long

as b = d since tj in Equation (6) only depends on d/b.

The effect of ecological drift on the loss of biodiversity varies

between neutral and non-neutral communities (Fig. 3).

Simpson’s diversity for the simulated strictly neutral commu-

nity (B/D = 1; Fig. 3a) is well predicted by the theoretical

model (Eq. 7). However, demographic differentiation plays

a sharply contrasting role in maintaining diversity, depending

on whether there is trade-off in demographic difference or

not. For trade-off communities, the loss of diversity is slower

than the strictly neutral community (Fig. 3b), while for non-

trade-off communities, the loss of Simpson’s diversity is accel-

erated over time (Fig. 3c and d). These results are in agree-

ment with the finding that demographic trade-off prolongs

coexistence time (Fig. 2).

DISCUSSION

The debate over the neutral theory of biodiversity is ongoing

(Clark 2009; Rosindell et al. 2011). Among the several un-

solved problems, the strongest criticism of the theory is its un-

realistic assumption of perfect neutrality, which ignores

observed difference in species fitness. Attempts have been

made to reconcile the neutral and niche theories and to gen-

eralize neutral theory by incorporating asymmetry (Adler et al.

2007; Allouche and Kadmon (2009); Alonso et al. 2006, 2008;

Cadotte 2007; Gravel et al. 2006; Hubbell 2005; Leibold and

McPeek 2006; Ostling 2011; Peng et al. 2012; Rosindell et al.

2010, 2012; Tilman 2004; Volkov et al. 2005; Zhang et al.

2012; Zillio and Condit 2007). Our study is a useful step along

this direction. We term this theory as nearly neutral theory

sensu the nearly neutral theory of molecular evolution (Ohta

1992; Ohta andGillespie 1996). It is nearly neutral because our

results (Figs 1 and 2) show that a small perturbation to the

symmetry assumption of birth and death rates dramatically

reduces species coexistence; the effect decelerates as the differ-

ences in birth and death rates increase.

Equation (2) is a generalization of previous models that

take account of demographic differentiation. It becomes

a strictly neutral model when b = d = 1. The increase or de-

crease of b and d describes departure from the neutral model

and reflects differences in species fitness. Neutral-dominated

communities will have b and d near 1, while non-neutral

communities have b and d larger than 1. The fitness equiva-

lent models of Lin et al. (2009), Ostling (2011) and Zhang et al.

(2011) correspond to the special case of b = d 6¼ 1. It is obvious

from Equations (4) to (6) that the extinction probability and

coexistence time not only depend on the d/b ratio but also on

the initial size of the focal species. This makes the behavior of

the fitness equivalent models be the same as the strict neutral

community of Equation (1). When b 6¼ d, Equation (2) cor-

responds to the non-neutral models of Zhang and Lin (1997)

and Yu et al. (1998), and the analysis of Yu et al. (1998) is
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equivalent to that of Zhang and Lin (1997). This finding is

previously unrecognized and reveals that the effect of differ-

ential death on species coexistence is very similar to the effect

of differential birth.

However, it is important to note two points. The first is that

the compensatory effects of birth and death on coexistence are

not completely symmetric as shown by Fig. 2 (if the effect were

completely symmetric, the slope of the red line in Fig. 2d

would be 1 with intercept = 0). The second point is that the si-

multaneous consideration of birth and death in the nearly neu-

tral model has greatly generalized our understanding of the

effect of demographic trade-off on coexistence. Previous results

(Fuentes 2004; Yu et al. 1998; Zhang and Lin 1997; Zhou and

Zhang 2008), by only considering birth differentiation or death

Figure 2: effects of different birth (b) and death (d) rates on the time of coexistence for three initial states j = 10 (a, b), 50 (c, d) and 90 (e, f) for

model 2. The right-hand panels are the contour plots of their left-hand 3D plots. The peak ridge of the coexistence time is shown by the red line in

each contour plot: d = 0.0468 + 0.909b, d = 0.0315 + 0.971b and d = 0.05 + b, respectively, for panels b, d and f.
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differentiation, just correspond to slice profiles of Figs 1 and 2 by

fixed b or d and thus could not unveil the effect of demographic

trade-off. Furthermore, the consideration of both birth and

death is necessary if other processes (e.g. density dependence)

in addition to the neutral process are considered (Parsons and

Quince 2007).

Species of the strictly neutral model have identical fitness,

and their dynamics are solely driven by random drift. This

system does not involve non-linearity to ensure rare species

advantage (Chesson andWarner 1981). By this criterion, the

nearly neutral model is also an unstable model that does not

involve stabilizing (rare species advantage) but equalizing

mechanisms (demographic stochasticity) that maintain co-

existence. Figure 2 shows that coexistence time is higher

at states away from the strictly neutral along the fitness-

equivalence manifold. This occurs due to a strong birth–

death trade-off between b and d by which symmetry (b �
d 6¼ 1 but not b = d = 1) is nearly met (Fig. 2b, d and f). In

this region, species coexist for a very long time, even longer

than strictly neutral species. This result is consistent with the

finding of Lin et al. (2009), Ostling (2011) and Zhang et al.

(2011) that higher diversity can be maintained by neutral

model of equivalent fitness than by the strictly neutral model.

The demographic trade-off here operates as an equalizing force

that tends to minimize fitness difference between species. This

result provides a support to Hubbell’s claim that interspecific

differentiation can promote coexistence without invoking

niche mechanisms (stabilizing force). It is worth noting that

trade-offs in life history traits are typically regarded as a niche

stabilizing mechanism (Grubb 1977). As we have shown here

this is not necessarily true as far as demographic trade-off is

concerned.

Ecological drift, dispersal limitation and speciation are the

three major community assembly rules in Hubbell’s neutral

theory. However, little is currently understood on how drift

would reduce the diversity of communities. For example,

how should effective community size (analogous to effective

population size in population genetics) be defined to measure

the loss of diversity due to drift (Hu et al. 2006; Lande et al.

2003; Orrock and Fletcher 2005)? Results in Fig. 3 show that

fitness equivalent neutral communities (Fig. 3b) lose diversity

more slowly than the strictly neutral community, while nearly

neutral communities (Fig. 3c and d) lose diversity much more

rapidly than the strictly neutral community. Clearly, the effec-

tive community size for nearly neutral communities should be

smaller than the neutral community. The challenge is how we

may analytically define an effective community size that

incorporates b and d (and also immigration and speciation pro-

cesses) (Hu et al. 2009).

The strictly neutral theory has been criticized for failing to

correctly predict the time of species existence (Lande et al.

2003; Nee 2005; Ricklefs 2006). Theories in population genet-

ics establish that the average age of a population in a commu-

nity is approximately 2N (N is community size) (Kimura

1983; Leigh 1981). This leads to the prediction that the aver-

age age of a tree species, even if rare, in a region of size of

Central America would be billions of years, long before plants

originated (Nee 2005). Therefore, the process of drift is just

too slow to account for rapid species turnover over time.

There have been attempts to explain this problem. For

Figure 3: effect of ecological drift on the loss of diversity as measured by Simpson’s index (heterozygosity). Red curves: the theoretical prediction

with a death rate of 0.5 for each species (Eq. 7); blue curves: mean6 standard error; green curves: median. The simulated communities are strictly

neutral (a), trade-off (b), and non-neutral (c for r = 0.001 and d for r = 0.01).

78 Journal of Plant Ecology

 at H
arvard U

niversity on M
ay 3, 2012

http://jpe.oxfordjournals.org/
D

ow
nloaded from

 

http://jpe.oxfordjournals.org/


example, it has been hypothesized that the division of a large

ecosystem into smaller homogeneous neutral communities,

climate change, coevolutionary interactions and gradual

(rather than instantaneous) speciation within ecological sys-

tems may each contribute to reducing the time of coexistence

(Lande et al. 2003; Nee 2005; Ricklefs 2006; Rosindell et al.

2010). Our results show that a small relaxation from the neu-

tral assumption can substantially reduce the time of coexis-

tence (Fig. 2). Although this reduction may still not be large

enough to fully account for the problem, nearly neutral the-

ory coupling with other processes (e.g. division of a large sys-

tem, reduced effective community size, gradual speciation)

can offer a promising solution.

It is worth mentioning that although Equation (2) is in es-

sence a demographic model, it can also be used to model the

effect of environmental stochasticity on species coexistence.

Birth and death factors b and d in Equation (2) are the ratios

of the probabilities of sampling species 1 over species 2 (to die

or to reproduce). Environmental factors that affect birth and

death could thus be incorporated into the nearly neutral mod-

els through b and d, and, in turn, their effects on the transition

probabilities can be modeled. This may be an opportunity to

introduce stabilizing mechanisms into the unstable nearly

neutral model.

The nearly neutral theory developed here generalizes the

neutral theory while not compromising the analytical tracta-

bility of the theory. The theory provides a promise to reconcile

mismatching predictions of the current neutral theory. Here

wewould like to raise an overlooked issue in the current study.

In fitness equivalent models, species of high birth and high

death are considered ecologically equivalent to species of

low birth and low death. This is true for species coexistence

as measured by Equations (4) and (6) but may not be so with

regard to other community properties, especially, in response

to environmental stochasticity. The high birth–high death ver-

sus low birth–low death trade-off will induce a difference in

variance along the trade-off manifold that could have impor-

tant implications to population survival and thus community

organization. This is not a straightforward question but

deserves a closer attention.
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APPENDIX 1
Derivation of the absolute coexistence time for the

trade-off-based drift model

The derivation of the absolute coexistence time requires

a reformulation of the asymmetric Moran–Hubbell model 2

in terms of a non-linear one-step stochastic process. Let’s start

by assuming that the probability for a given individual of the

focal species to die in the time interval (t, t + Dt) is D1Dt, where

D1 is a species-specific ‘death rate’. From this assumption, it

follows that the probability of one death occurring in (t,

t +Dt) in the focal species is jD1Dt+oðDtÞ, where oðDtÞ is a higher
order term of Dt and can be disregarded when Dt is small. The

above probabilities then is jD1Dt.
The one-step transition probabilities that the abundance of

the focal species increases or reduces by one individual, or un-

changed are, respectively:�
pj; j + 1 = ½ðN � jÞD2Dt�

�
B1j

B1j+B2ðN � jÞ

�

pj; j� 1 = ½jD1Dt�
�

B2ðN � jÞ
B1j+B2ðN � jÞ

�
;

pj; j =1 � pj;j +1 � pj;j� 1

ðA1Þ

where Bi is the birth rate of species i (=1, 2). The first term,

½ðN � jÞD2Dt�, on the right-hand side of pj,j+1 is the probability

of a death occurring in species 2 during the interval (t,

t + Dt). The second term, jB1

B1j+B2ðN�jÞ, is the probability of a birth

(immediately following the death event) occurring in species 1.

The transition probability, pj,j+1, is a joint probability of a death in

species 2 followed by a birth in species 1. The probabilities above

are the continuous time version of Equation (2) in themain text.

The time to fixation or absorption, tj, is defined as the aver-

age number of time steps for the focal species traveling from

j to either N or 0 (Ewens 2004; Zhang and Lin 1997):

tj =
j

N
+

N� 1

i=1

+
i

k=1

1

pk;k+1
� +

j� 1

i=1

+
i

k=1

1

pk;k+1

=
j

N
+

N �1

i=1

+
i

k=1

B1k+B2ðN � kÞ
ðN � kÞkB1D2Dt

� +
j� 1

i=1

+
i

k=1

B1k+B2ðN � kÞ
ðN � kÞkB1D2Dt

; 1<j<N:

ðA2Þ

From (A2), it is obvious that a natural measure of coexis-

tence time is given by

Tj = tjDt =
j

N
+

N �1

i=1

+
i

k=1

B1k+B2ðN � kÞ
ðN � kÞkB1D2

� +
j� 1

i=1

+
i

k=1

B1k+B2ðN � kÞ
ðN � kÞkB1D2

=
jðN � 1Þ

ND2

+
j

N
+

N� 1

i=1

B2

B1D2

N � i

i
� +

j� 1

i=1

�
j � i

D2ðN � iÞ+
B2

B1D2

j � i

i

	

1<j<N:
ðA3Þ

The above absolute coexistence time Tj can be further sim-

plified for fitness equivalent neutral communities by assuming

equivalent fitness, i.e. B1/D1 = B2/D2. This fitness equivalence
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(corresponding to the scenario of b = d of Eq. 6) removes B1 and

B2 from (A3).

The above model becomes the Moran–Hubbell model if the

time step is defined asDt = 1
jD1+ðN�jÞD2

. This is the implicit assump-

tion behind the Moran model and all subsequent Markov-chain

models in discrete times. Here,Dt is no longer invariant but varies

with relative species abundances of the community if species dif-

fer in their death rates. This property, whichmakes the transition

probabilities no longer suitable for use in the master equation,

has passed practically unnoticed in the literature. Of course, this

is not a problem if only demographically symmetric species are

considered. This perhaps explains why it was not noticed before.

In theMoran–Hubbell model, the relative coexistence time

is measured in terms of the average number of deaths re-

quired for the focal species to drift to 0 or N. Substituting

Dt = 1
jD1+ðN�jÞD2

into the relative time of Equation (A2), one

obtains Equation (6) of the main text. The relative time

and absolute time are qualitatively similar in most cases ex-

cept that when death rate is very low in which the absolute

time can be longer than the relative time. In all cases, both

times show that strictly neutral species (i.e. having exactly

the same birth and death rates) in general do not constitute

maximum coexistence, particularly when viewed from the

relative time. This is an important result of this study, new

to the literature.

APPENDIX 2
Derivation of diversity decay for strictly neutral

species with identical vital rates in a lottery model

Define Ft as the probability that two randomly sampled indi-

viduals at generation t are of the same species. 1 � Ft is thus

Simpson’s diversity index, commonly denoted by Ht in popu-

lation genetics. In the lottery model (Lin et al. 2009), a portion

D of individuals die and are replaced by offspring of all individ-

uals with equal probability. When two individuals are sampled

at random, there is a probability of ð1� DÞ2 that neither of

these two is the new individual and the probability that at least

one is the new individual is 1� ð1� DÞ2. If neither of the sam-

pled individuals is new, then the probability they are of same

species is simply Ft�1. If two sampled individuals are both new,

the probability that they are the progeny of the same individ-

ual in the previous generation is 1/N; if they are the progeny of

different individuals, which occurs with probability (1 � 1/N),

then the probability they are of the same species is Ft�1. Putting

together, the probability two sampled individuals are of

the same species is


1
N
+
�
1� 1

N

�
Ft�1

�
when they are both

new. By the same argument we can derive the same result

when only one sampled individual is new. We thus have

the recursion

Ft =


1 � ð1 � DÞ2

��1
N
+

�
1 � 1

N

�
Ft� 1

	
+ ð1 � DÞ2Ft� 1:

ðA3Þ

After some rearrangement, we obtain

1 � Ft =

�
1 � Ft� 1

��
1 � 2D � D2

N

�
: ðA3Þ

Therefore, Simpson’s diversity index changes with time as

Ht =1 � Ft =H0

�
1 � 2D � D2

N

�t

: ðA3Þ

Obviously, if D = 1, it reduces to the Wright–Fisher model

with non-overlapping generations, which is Ht =H0

�
1� 1

N

�t
.

The larger D, the quicker the diversity decays. This must be

the case because higher annual mortality rates imply more

turnovers, which in turn leads to more effective drift.

APPENDIX 3
Simulation based on the lotterymodel for evaluating

the effect of ecological drift on non-neutral

communities

We performed the simulation by running 100 independent

communities. For each of the 100 communities, its size is

set to be 10 000. At the beginning of each simulation, the com-

munity is occupied by 100 species with equal abundance, and

each species is characterized with a death rate (Di) randomly

drawn from a uniform distribution U(0, 1) and a birth rate (Bi)

randomly drawn from a normal distribution N(Di, r
2), where

r2 is the variance and Bi > 0.

With the above general setting, each simulation goes for-

ward as follow.

STEP 1 (death process):

� For each species, its abundance is denoted as Ni.

� For each individual of the species, a number is randomly

generated from a uniform distribution U(0, 1).

� If the randomnumber generated is less than or equal to its

death rate (Di), the individual is designated as dead, and

the abundance of the species (Ni) decreases by one.

� Thus, the total number of dead individuals across all ex-

istent species in the community could be counted and is

denoted as tNum.

STEP 2 (birth process):

� For each of these tNum vacant sites released from the

deaths of STEP 1, a new individual is recruited, which

is sampled from one of the existent species in the commu-

nity (before the death process) in accordance to its birth

rate (Bi) and its abundance (Ni).

� One cycle (from death to birth process) of the simulation

is counted as one time unit. Each simulation continues till

the total time unit reaches 60 000. During the course of
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simulation, the community was sampled once per 1000

time units (hence there are 60 Simpson’s indices for each

simulation).

The above STEP 1 and STEP 2 were repeated for 100 com-

munities (i.e. 100 independent runs). The resultant curves

(Fig. 3) and their error bars were calculated based on mean

and standard error of these 100 communities.
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