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Summary

1. Seed dispersal is a key biological process that remains poorly documented because dispersing

seeds are notoriously hard to track. While long-distance dispersal is thought to be particularly

important, seed-tracking studies typically yield incomplete data sets that are biased against long-dis-

tancemovements.

2. We evaluate an analytical procedure developed by Jansen, Bongers & Hemerik (2004) to infer

the tail of a seed dispersal kernel from incomplete frequency distributions of dispersal distances

obtained by tracking seeds. This ‘censored tail reconstruction’ (CTR) method treats dispersal

distances as waiting times in a survival analysis and censors nonretrieved seeds according to how

far they can reliably be tracked. We tested whether CTR can provide unbiased estimates of long-

distancemovements which typically cannot be trackedwith traditional fieldmethods.

3. Weused a complete frequency distribution of primary seed dispersal distances of the palmAstro-

caryum standleyanum, obtained with telemetric thread tags that allow tracking seeds regardless of

the distance moved. We truncated and resampled the data set at various distances, fitted kernel

functions on CTR estimates of dispersal distance and determined how well this function approxi-

mated the true dispersal kernel.

4. Censored tail reconstruction with truncated data approximated the true dispersal kernel remark-

ably well but only when the best-fitting function (lognormal) was used. We were able to select the

correct function and derive an accurate estimate of the seed dispersal kernel even after censoring

50–60% of the dispersal events. However, CTR results were substantially biased if 5% or more of

seeds within the search radius were overlooked by field observers and erroneously censored. Similar

results were obtained using additional simulated dispersal kernels.

5. Our study suggests that the CTRmethod can accurately estimate the dispersal kernel from trun-

cated seed-tracking data if the kernel is a simple decay function. This method will improve our

understanding of the spatial patterns of seed movement and should replace the usual practice of

omitting nonretrieved seeds from analyses in seed-tracking studies.

Key-words: censored tail reconstruction, censored tail reconstruction, kernel, long-distance

dispersal, seed dispersal, seed tracking, thread tag

Introduction

Seed dispersal is an important process affecting population

dynamics, gene flow, species diversity and biological invasions

of plants (Janzen 1970; Connell 1971; Nathan & Muller-Lan-

dau 2000; Wright 2002; Jansen, Bongers & van der Meer

2008). In particular, seeds that disperse over relatively short

distances typically have lower survival than those that disperse

further away from conspecifics (Janzen 1970; Comita et al.

2010; Mangan et al. 2010). Describing the probability distri-

bution of dispersal distances, the so-called dispersal kernel is

crucial for understanding these biological processes (Nathan

& Muller-Landau 2000; Jongejans, Skarpaas & Shea 2008).
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Estimates of long-distance dispersal (LDD), the tail of the dis-

persal kernel, are particularly important for modelling species

invasions or predicting species responses to climate and habi-

tat change (Clark et al. 1999; Cain, Milligan & Strand 2000;

Levin et al. 2003).

A principal reason why seed dispersal remains relatively

poorly understood is that dispersing seeds are notoriously hard

to follow (Wang & Smith 2002). It is often difficult or impossi-

ble to individually tag and follow seeds because they are so

small. Researchers typically use seed marking methods such as

thread tags or radioisotopes and then attempt to relocate

tagged seeds after dispersal (reviewed in: Forget & Wenny

2005). Although this has resulted in a much better understand-

ing of when and how far seeds disperse, a certain proportion of

the dispersed seeds in these studies are never recovered, thus

their dispersal distances remain unrecorded (Wang & Smith

2002). Because seeds that disperse relatively far are the most

difficult to find, LDD events are the least likely to be observed.

The resulting bias against far-dispersed seeds is problematic

because it misses the tail of the seed dispersal kernel, which is

the most important portion of the distribution (Bullock &

Clarke 2000). Seeds that disperse far are important for a host

of ecological and evolutionary processes such as the spread of

invasive species, metapopulation dynamics and maintenance

of diversity (Portnoy &Willson 1993, Cain, Milligan & Strand

2000; Nathan et al. 2003; Soons&Bullock 2008).

In most seed-tracking studies, researchers search for dis-

persed tagged seeds within a predefined radius of the point of

release (Fleming & Heithaus 1981; Howe 1990; De Steven

1994; Fragoso 1997; Jansen, Bongers &Hemerik 2004; Jansen,

Bongers & van der Meer 2008). Seeds that disperse further

than this search radius are automatically lost. Typically, these

seeds are classified as ‘missing’ and omitted from the data set,

thus dispersal distances greater than the search radius are not

represented in the data set. Jansen, Bongers & Hemerik (2004)

developed an approach for overcoming this problem, but this

method has never been validated. This method, henceforth

called ‘censored tail reconstruction’ (CTR) uses survival analy-

sis to estimate the entire dispersal kernel based on the pattern

observed at the beginning of the distribution. Instead of omit-

ting missing seeds, this analysis assumes that all missing seeds

dispersed beyond the search radius. Dispersal distances are

treated as waiting times, while missing seeds are treated as

observations censored at the search radius. The full dispersal

kernel is then estimated by fitting a cumulative function to

Kaplan–Meier probability estimates of dispersal distance.

Jansen, Bongers &Hemerik (2004) used the CTRmethod to

estimate the dispersal kernel ofCarapa procera seeds dispersed

by scatter-hoarding rodents in French Guiana from data on

thread-tracked seeds with incomplete recovery. To date, these

two studies remain the only published applications of this

method. Although the CTR method is arguably superior to

the common practice of simply omitting missing seeds from a

data set, the accuracy of this method in providing credible esti-

mates of dispersal distances has not been tested. Jansen, Bon-

gers & Hemerik (2004) fitted a Weibull function to the

survivorship curves, but it is unknown whether this is the best-

fitting function in general. It is also unknown how sensitive the

CTR method is to falsely censored seeds, for example seeds

overlooked by field researchers within the search radius.

To test whether the CTR method produces accurate esti-

mates of seed dispersal distributions, we used an existing,

unpublished data set: the complete frequency distribution of

seed dispersal distances for the rodent-dispersed palm Astro-

caryum standleyanum (hereafter: Astrocaryum), which was

obtained through seed tracking with telemetric thread tags

(B.T. Hirsch, P.A. Jansen&R.Kays submitted).We truncated

the data set at various distances to mimic search distances used

in the field, fitted different dispersal kernel functions through

CTR, used DAIC values to select the best-fitting function and

determined how well this function approximated the observed

full dispersal kernel. Additionally, we quantified the effect of

function selection and falsely censored seeds on the CTR

results. These tests allowed us to evaluate the overall robust-

ness of the CTR method and make recommendations about

study design. Finally, we used the CTRmethod in conjunction

with simulated dispersal kernels to test whether it can be used

in studies of plant species with different shaped dispersal ker-

nels.

Methodology

SEED DISPERSAL DATA

The data set with seed dispersal distances that we used for our

test was collected on Barro Colorado Island (BCI), Panama, a

1560-ha island protected and administered by the Smithsonian

Tropical Research Institute (9�10¢N, 79�51¢W). BCI is covered

with primary and secondary semi-deciduous moist tropical

forest. Annual rainfall averages 2600 mm with an average

temperature of 27 �C. The dry season generally lasts from

mid-December to May (Terrestrial-Environmental Sciences

Program of the Smithsonian Tropical Research Institute).

The study species,Astrocaryum standleyanum, is aNeotropi-

cal arborescent palm occurring from Costa Rica to Ecuador.

Trees annually produce 3–6 pendulous infructescences with up

to 1500 ovoid fruits in total. The local fruiting period is from

March to the beginning of July (De Steven et al. 1987). The

fresh weight of the 2–3 cm seeds averages 9Æ6 g (Wright et al.

2010). Astrocaryum depends on scatter-hoarding by rodents

for seed dispersal, in particular on agoutisDasyprocta punctata

(Smythe 1989; Galvez et al. 2009), 2–4 kg caviomorph rodents

that bury the seeds in the soil as food reserves for periods of

food scarcity (Smythe 1978, 1989).

A complete frequency distribution of seed dispersal dis-

tances of Astrocaryum was obtained by placing 589 tagged

seeds at 52 seed stations across a �25-ha area in the centre of

BCI. Each seed had a telemetric thread tag and a black nylon-

coated stainless steel leader wire tied to a 3Æ8-g radiotransmitter

with 20-cm wire antenna (Advanced Telemetry Systems,

Isanti, MN, USA; Hirsch et al. submitted). Dispersal distance

was measured of 423 seeds removed from seed stations by

animals, and no differences in removal rate or dispersal dis-

tance were found between seeds with and without transmitters
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(Hirsch et al. submitted). Removed seeds were located by sight

or with a hand-held telemetry receiver (Yaesu VR-500) and

three-element Yagi antenna. The transmitter was occasionally

bitten off of the seed, but 97% of seed tags were recovered

intact (Hirsch et al. submitted). Dispersal distance and direc-

tion were measured with measuring tape and a compass. If a

seed dispersed more than 20 m, a hand-held GPS receiver

(Garmin 60CSx GPS) was used to measure the dispersal dis-

tance. We used the primary dispersal distances obtained from

the above study to formulate our empirical dispersal kernel

(e.g. no secondary dispersal events were included).

DISPERSAL KERNEL FITT ING

We fitted four commonly used dispersal kernels in their one-

dimensional form (i.e. probability density functions) directly to

the distribution of dispersal distances from the 417 radio-

tracked seeds: (i) lognormal, (ii) Weibull, (iii) exponential and

(iv) 1DT (Table 1). All are simple decay functions in which

larger dispersal distances are less frequent than any shorter

dispersal distance, as is commonly assumed in seed dispersal

studies.We used the function optim in R 2.10 (RDevelopment

Core Team 2010) to search for the parameter values in each of

the four probability density functions that maximized the

likelihoodL of the observed distances (d);

L d j ph i ¼
Yi¼n
i¼1

f dj; p
� �

;

where d is a vector of n observed dispersal distances, p a

set of parameters corresponding to one of the probability

density function f. We used Akaike information criterion

(AIC; Akaike 1974) to determine which function fitted the

observed data best.

CENSORED TAIL RECONSTRUCTION

The CTR method (cf. Jansen, Bongers & Hemerik 2004;

Jansen, Bongers & van der Meer 2008) uses survival analy-

sis to estimate the dispersal kernel, assuming that missing

seeds have travelled beyond the search radius. CTR treats

the retrieval of a dispersed seed as an event, observed dis-

persal distances as failure times, and missing seeds as

events censored at a given dispersal distance, that is, the

radius of the area in which dispersed seeds were searched.

Kaplan–Meier survival analysis is used to calculate the sur-

vivorship function to which a standard dispersal kernel

can then be fitted and used to predict the tail of the distri-

bution.

The steps used in CTR are:

1. Collect data on seed dispersal distance using thread tags or

similar methods as appropriate for the study system. The

search radius and the number of seeds lost (i.e. moving fur-

ther than this distance) should be recorded.

2. Estimate the Kaplan–Meier survivorship curve, treating

dispersal distance as time, and including all missing seeds as

observations censored at the search radius.

3. Fit probability density functions to the K–M survivor-

ship curve. We test four functions used in previous studies

here, but any other appropriate decay function can be

used.

4. Use the AIC selection procedure to determine which prob-

ability function best fits the data.

We provide an example R-code which can be used as a guide

to conduct CTR analyses in Appendix S1. The R-code uses

the packages ‘survival’ (Therneau & Lumley 2009) and ‘fdr-

tool’ (Strimmer 2011).

To estimate the accuracy of CTR, we estimated the differ-

ence between CTR-derived dispersal kernels fitted on trun-

cated data and the ‘true’ empirical dispersal kernel for

Astrocaryum. Truncated data were obtained by assuming that

all Astrocaryum seeds dispersed beyond a given search radius

were missing. We then compared the average distance of the

95% percentile of the dispersal kernel between the CTR and

empirical results. We used the 95th percentile criteria as a mea-

sure for LDD because of its use in previous studies (e.g.

Nathan et al. 2003).

We evaluated the sensitivity of the CTR method to three

potential sources of bias: (i) the probability density function

used, (ii) the size of the search radius (or proportion of seeds

which fall within the search radius) and (iii) the proportion of

seeds overlooked by observers within the search radius (falsely

censored seeds). We estimated confidence intervals (a = 0Æ05)
for each measure of bias (detailed below) using a nonparamet-

ric bootstrap (Efron & Tibshirani1993). Confidence intervals

were calculated as the 2Æ5 and 97Æ5 percentiles of the boot-

strapped estimates.

Function selection

We tested the sensitivity of CTR for function selection by

comparing dispersal distance estimates derived with the CTR

method for each of four previously defined probability density

functions. These four functions were chosen because they have

commonly been used in prior studies of seed dispersal

(Table 1). We compared the CTR-derived distance of the

Table 1. Dispersal kernel functions fit to empirical seed dispersal

distances in the palmAstrocaryum standleyanum, ranked by fit.DAIC

values denote the difference in AIC scores between the current model

and the best-fittingmodel

Rank Function Model DAIC

1 Lognormal*,†,‡ fðxÞ ¼ 1

x
ffiffiffiffiffiffiffi
2pr2
p e�

ðlnx�lÞ2

2r2 0Æ00

2 Weibull‡,§
fðxÞ ¼

k
k

x
k

� �
e�ðx=kÞ

k

; x � 0
0; x<0

� �
19Æ70

3 Exponential¶,** fðxÞ ¼ ke�kx 28Æ17
4 1DT‡,††,‡‡ fðxÞ ¼ 2xb

a 1þ x2

a

� ��bþ1
. 38Æ82

*Greene & Johnson (1989).
†Skarpaas, Shea & Bullock (2005).
‡Bullock, Shea & Skarpaas (2006).
§Jansen, Bongers & van der Meer (2008).
¶Tufto, Engen & Hindar (1997).
**Austerlitz et al. (2004).
††Jones & Muller-Landau (2008).
‡‡Clark et al. (1999).
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95% percentile of the dispersal kernel using four mathematical

functions vs. the empirical results. Through bootstrapping we

also tested how often AIC yielded the true (or nontruncated)

dispersal model among the four candidate models fit to trun-

cated data.

Search radius

A typical search radius used in previous studies is 20 m

(Howe 1990; De Steven 1994); however, it is unknown

whether using such a radius with the CTR method can yield

accurate results. Here we created multiple truncated data sets

based on the empirical Astrocaryum dispersal kernel with

search radii ranging between 1Æ6 and 134Æ5 m which corre-

sponded to 0–90% of seeds falling outside the search radius.

We then tested the effectiveness of the CTR method using

these various search radii (19 different radii were evaluated

in total, each increasing radius corresponded to a 5%

increase in the proportion of seeds recovered). We used the

difference between the observed ‘true’ 95th percentile of dis-

persal distance and the CTR-derived results as an estimate of

bias. Bias (e) was calculated as e = lctr ) l, where l is the

‘true’ observed LDD distance and lctr is the CTR-derived

LDD measure. Here we report the absolute proportional

bias |e| ⁄l.

False-censoring or overlooking seeds

The CTRmethod is based on the assumption that all seeds not

recovered within the search radius were dispersed beyond this

radius. To determine how robust the CTR method is to viola-

tions of this assumption, we evaluated bias when 0–50% of the

seeds were overlooked (in 11 equally spaced steps, each step

corresponding to a 5% increase in the proportion of over-

looked seeds). This was done by randomly removing a given

percentage of the seeds from a truncated data set (truncated at

20 m) and treating them as censored. We used the same mea-

sure of bias (|e| ⁄l) for this analysis.

ROBUSTNESS ANALYSIS

To evaluate how sensitive CTR is to the specific shape of the

distribution, we ran the above analyses for a variety of simu-

lated seed distributions that had the same sample size and scale

as the empirical distribution (Appendix S2). We used aMonte

Carlo type simulation to generate dispersal distributions

through random number generation from each of the four

tested probability density functions.

Results

Primary dispersal distances of the 417 Astrocaryum seeds ran-

ged between 0Æ15 and 132Æ5 m (mean 14Æ7 m, median 7Æ5 m).

Of the four dispersal kernel functions, the lognormal fitted the

observed dispersal data best (Table 1, Fig. 1). Compared with

the estimated 95th quantile distance calculated from the empir-

ical data set (58Æ6 m), the lognormal distribution was more

accurate (estimate = 58Æ4 m, 95% CI = 44Æ4–74Æ8 m) than

the Weibull (34Æ7 m, 34Æ7–37Æ5 m), exponential (34Æ9 m, 32Æ0–
37Æ6 m) and 1DT distributions (97Æ6 m, 73Æ9–139Æ8 m)

(Fig. 2). These analyses demonstrate that the CTR method is

highly sensitive to the mathematical function that is fitted on

the Kaplan–Meier survivorship estimates. When the best-fit-

ting model (lognormal) was used with the CTR method, the

derived results were very similar to the empirical results

(Fig. 2).

Given the importance of model choice, the AIC approach

was an important step in selecting the best model for our

CTR-derived data set. The lognormal function, which gave

the best overall fit to the full observed data set and provided

the least bias, was selected 97% of times based on its DAIC

score (after 1000 resampled data sets). Similar results were

obtained with simulated data (Table S1). In the simulation, a

noncritical issue arose when the curve could be approximated

equally well by two different models (for example, the

Weibull with a shape parameter of 1 is the equivalent of the

exponential), but model predictions were essentially identical

in such cases. These results indicate that the AIC model

selection can effectively select the CTR-derived function that

corresponds with the true dispersal kernel in the evaluated

cases.

THE EFFECT OF SEARCH RADIUS

Bias rapidly decreased as a higher proportion of seeds are

recovered (i.e. search radius increased) up to a point, and

then levelled off (Fig. 3). In fact, there is little improvement

in the estimate when more than 50% of seeds are recovered,

which would have been accomplished with a 7Æ5-m search

radius for Astrocaryum seeds. The simulated results also show

acceptable bias when a large proportion of the seeds are

recovered (‡50%), which suggests that this result is robust

(Fig. S1).

THE EFFECT OF OVERLOOKING SEEDS (FALSE-

CENSORING)

The CTR method was highly sensitive to false-censoring of

seeds within the search radius (Fig. 4). The CTR method

worked well when <5% of the seeds that dispersed within

the search radius were overlooked, but bias was substantial

when larger proportions were overlooked. For example,

starting from the 5% threshold of falsely censored seeds, the

proportional bias increases exponentially from 29Æ4%
(Fig. 4.) Simulations showed that the strength of the bias

due to falsely censored seeds depended on the ‘fatness’ of the

tail of the distribution (the proportion of seeds dispersing

long distances); ‘fat-tailed’ distributions, such as the lognor-

mal, were relatively sensitive to overlooked seeds (Fig. S2).

This shows that the assumption of the CTR method that all

nonrecovered seeds dispersed beyond the search radius is

critical and that the effect of violating this assumption is

much greater than the effect of using a relatively small search

radius.
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Discussion

Seed-tracking studies typically classify nonrecovered seeds as

missing observations, which produces an inherent bias against

longer distance seed movement. Here we used a full-dispersal

data set, obtained with telemetric seed tags, to evaluate an

alternative method for handling these nonrecovered seeds:

CTR (Jansen, Bongers & Hemerik 2004; Jansen, Bongers &

van der Meer 2008). We found that the CTR method can pro-

duce excellent approximations of the true dispersal kernel as

long as 50% or more of the seeds dispersed are recovered and

<5% of the seeds dispersed within the search radius are over-

looked (Fig. 3). In all cases evaluated, the CTR method

approximated the true dispersal kernel better than the stan-

dard practice of omitting nonretrieved seeds from the data set.

The ability to accurately predict dispersal distance at a given

percentile using the CTR method was greatly affected by the

choice of function that was fitted to the survival estimates.

However, even when using truncated data, it was generally

possible to choose the ‘correct’ function with the use of the

AIC selection method. This appears to be independent of the

shape of the kernel, as demonstrated in our simulation results

(Table S1). We advise researchers to take care in selecting a set

of dispersal models from which to conduct model selection as

appropriate functions will vary across dispersal systems. Also

note that in some systems, complex multimodal kernels exist

(e.g. Russo, Portnoy & Augspurger 2006). These cannot be

described with commonly used simple (decay with distance)

seed dispersal functions (Cousens, Dytham & Law 2008).

Researchers should also be aware that problems can arise

when estimating 2D seed density using the best-fitting kernel

obtained from 1D data, as not all 1D models are equally

appropriate for translation to two dimensions. Depending on

the precise mathematical formulation, some 1D kernels (e.g.

the exponential) that allow for nonzero predictions at the ori-

gin will result in infinite densities at the point zero (a ⁄2pr = ¥
when r = 0) when translated to 2D. A list of suitable two-

dimensional density kernels which can be freely translated

from 1 to 2 dimensions are listed in the study by Cousens,

Dytham&Law (2008); table 5.2).
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Fig. 1. Alternative dispersal kernels of Astrocaryum standleyanum (grey lines), fitted to incomplete seed dispersal data through censored tail

reconstruction (CTR), compared with the Kaplan–Meier survivorship curve showing the true distribution of seed dispersal distances (black

lines). The curves show the probability (or proportion) of seeds dispersing beyond any given distance. In these examples, the alternative dispersal

kernels were fitted to data sets truncated at 20 m (�75% seeds recovered). Solid lines indicate median estimates, and dashed lines indicate the

95% confidence intervals. The lognormal distribution showed the best fit to the full data set (Table 1) and provided the best approximation of the

dispersal distances. Note the log-scale of the probability.
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The CTR method worked surprisingly well even when sam-

pling a small part of the full dispersal kernel, producing accu-

rate results even when 50% of seeds fell outside the search

radius. For theAstrocaryum in our study, this could have been

met with a 7Æ5-m search radius (assuming no seeds are over-

looked). Given that the shape of seed dispersal kernels can vary

between years and between species (Greene et al. 2004), we rec-

ommend researchers choose a search radius that includes at

least 50%of their tagged seeds.We also encourage further tests

of the CTR method on different plant species and in systems

where dispersal occurs at different spatial scales. Even if the

50% cut-off cannot be applied to any and all study systems,

our results provide guidelines for the experimental design of

future seed-tracking studies. Our results suggest that the tradi-

tional search radius of 20–30 m is sufficient for use with the

CRT method if seed dispersal is on a similar scale as Astro-

caryum.

We found that error resulting from falsely censored seeds

within the search area is a much larger concern than the pro-

portion of seeds censored. Overlooked seeds can greatly distort

the results, and the accuracy of the CTR method is extremely

sensitive to these observer errors. If seeds in a given study sys-

tem are easily overlooked, or if the search radius is too large to

efficiently find >95% of seeds that fall within the area, the

CTR method could lead to large overestimations of long dis-

tance dispersal. In addition, if the seeds in a given study system

are completely destroyed when eaten, this may have a similar

effect as overlooked seeds. The CTR method can only be used

in systems where eaten seeds can be retrieved or where seeds

are never immediately consumed. Depending on how easy it is

to overlook seeds with a particular tracking method, a trade-

off could exist between the size of the search area and the

amount of overlooked seeds. We suggest that researchers

choose a search radius and tracking method that yields low

rates of overlooked seeds. We also feel that it would be useful

for researchers to empirically test the efficiency of their field

crew in detecting seeds to ensure that they are within the range

recommended by our sensitivity analysis.

Comparing CTR-derived estimates of seed dispersal kernels

vs. the true kernel showed that the CTRmethod can accurately

estimate the dispersal kernel using truncated seed-tracking

data. It should also be possible to reanalyse data from previ-

ously published studies to extract complete dispersal kernels,

provided that the search radius is reported and that the search

was full and reliable. Our results show that the CTR method

can be used in conjunction with standard tagging methods to
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straps for each of the functions. Estimated 95th percentile dispersal

distances when not conducting a CTR correction are shown as solid

black triangles.
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adequately approximate complete seed dispersal kernels by

collecting enough data over a smaller area to characterize the

scale and shape of the relationship. For example, CTR would

be ideal in conjunction with radioisotope labelling because

Geiger counters allow retrieval of a very high proportion of

cached seeds in a given area (Vander Wall 1997). These radio-

isotope labels can also be used to recover the seed coat of eaten

seeds. Low-tech seed-tagging methods such as thread tags and

fluorescentmarking are typicallymuchmore economically fea-

sible than methods that allow the measurement of complete

seed dispersal kernels, such as genetics or radiotelemetry.

Using these methods along with the CTR would allow

researchers around the globe to obtain credible dispersal ker-

nels from more plant species, thus extending our understand-

ing of seed dispersal, and plant ecology in general. CTR should

entirely replace the traditional practice of simply ignoringmiss-

ing seeds.
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# Example R code for conducting a CTR analysis using generated data 
# Hirsch, Ben T, Visser, Marco D, Kays, Roland W, Jansen, Patrick A. 
# Nijmegen June 2011 
# Revised August 2011 
 
########################### load dependancies################################### 
# Code requires package fdrtool & survival to be in library 
# otherwise use e.g. install.packages("fdrtool") first 
require(fdrtool);require(survival) 
 
 
############################# Create data ###################################### 
# Next step is to generate example data "radiotagged distance", stored as object 
x 
# set random seed 
set.seed(2011) 
# generate data from lognormal distribution, 500 tracked seeds 
# meanlog=log(50), sdlog=log(3) 
x=rlnorm(500,log(50),log(3)) 
 
 
# truncate data after 20 units to create "tracked distances"   
# with 20 m search radius 
xtrunc=x[x<20] 
 
# Prepare data for CTR 
CTRdata=data.frame( 
# all seeds that went beyond 20 meters are treated as censored events  
# (distance > 20 meter) 
d=c(xtrunc,rep(20,500-length(xtrunc))), 
# classify events, found seeds = 1, censored seeds = 0 
evnt=c(rep(1,length(xtrunc)),rep(0,500-length(xtrunc)))) 
# fitsurvival function  
CTR_function=survfit(Surv(CTRdata$d, event=CTRdata$evnt) ~ 1) 
# return survival probabilties (P) corresponding to distances (D) 
P=summary(CTR_function)$surv;D=summary(CTR_function)$time 
 
######################## Define dispersal kernels ############################## 
# these kernels are then fit through OLS (Ordinary Least Squares) to objects P & 
D 
 
# log normal 
SSLN=function(param){ 
Ex=1-plnorm(D,meanlog=param[1],sdlog=param[2]) 
sum((Ex-P)^2) 
} 
 
# Weibull 
SSW=function(param){ 
Ex=1-pweibull(D,shape=param[1],scale=param[2]) 
sum((Ex-P)^2) 
} 
 
# exponential 
SSEX=function(param){ 
Ex=1-pexp(D,rate=param) 
sum((Ex-P)^2) 



} 
 
# Normal 
SSN=function(param){ 
Ex=1-phalfnorm(D,theta=param[1]) 
sum((Ex-P)^2) 
} 
 
 
 
################ Obtain kernels with reconstructed tails ####################### 
 
 
#Fit each model to the censored data and store 
 
fitLN=optim(c(1,1),SSLN) 
LNpsave=c(fitLN$par[1],fitLN$par[2]) 
 
fitW=optim(c(1.2,55),SSW) 
WBpsave=c(fitW$par[1],fitW$par[2]) 
 
# Note: above the OLS function was optimized with the Nelder-Mead algorithm  
# however this algorithm is optimal for optimization problems of 2 Dimensions 
# or greater. The quasi-Newton method 'BFGS' is better suited for 1 D (or 1  
# parameter) problems. Alternatively the function 'optimize' can be used 
# however result will be the same either way. 
 
fitN=optim(c(0.05),SSN,method="BFGS") 
Npsave=c(fitN$par[1]) 
 
fitEX=optim(c(0.01),SSEX,method="BFGS") 
EXpsave=c(fitEX$par[1]) 
 
# choose best model based on AIC score 
 
OLSscores=c(fitLN$value,fitW$value, 
fitN$value,fitEX$value) 
 
# vector with number of parameters for each model 
pars=c(2,2,1,1) 
# calculating AIC from sum of squares 
AICscores=(500*log(OLSscores/500) + 2*pars) 
 
#################################### FINAL ##################################### 
 
#selecting bestfitting model 
bestfit=c("LN","WB","T","N","EX")[which(AICscores==min(AICscores))] 
 
#checking difference in between estimated and generating kernel 
par(cex.axis=0.9,cex.lab=1.1,las=1,mar=c(4,5,1,1),mfrow=c(2,1)) 
# density plots 
curve(dlnorm(x,log(50),log(3)),0,150,col='grey',xlab="distance", 
ylab="probabilty density",lwd=2) 
curve(dlnorm(x,fitLN$par[1],fitLN$par[2]),col='black',add=T,lty='dashed',lwd=2) 
legend(100,0.010,legend=c('True', 'CTR derived'),lty=c('solid','dashed'), 
col=c('grey','black'),bty='n',lwd=2) 
 



# probability P of dispersal beyond distance D 
curve(1-plnorm(x,log(50),log(3)),0,150,col='grey',xlab="D", 
ylab="P",lwd=2) 
curve(1-
plnorm(x,fitLN$par[1],fitLN$par[2]),col='black',add=T,lty='dashed',lwd=2) 
legend(100,0.90,legend=c('True', 'CTR derived'),lty=c('solid','dashed'), 
col=c('grey','black'),bty='n',lwd=2) 
 
 
 



Appendix S2: Results from simulated distributions. 

We tested how robust the results in the manuscript (and the CTR method in general) are to the 
specific shape of the dispersal distribution by applying it to simulated data with four different 
distributions: lognormal, Weibull, exponential, and 1DT.  Datasets of dispersal distances were 
generated from each of the distributions using pseudo‐random number generation in R (R 
development core team 2011). The randomly generated datasets had the same sample size and 
median dispersal distance as the originally evaluated empirical distribution (thus only differed in the 
shape of the distribution). We treated the simulated data exactly as the empirical data in the main 
text. From each, we created multiple truncated datasets (N= 1000), used the CTR method to estimate 
the dispersal kernel, and evaluated the bias resulting from 1) model choice, 2) search radius, and 3) 
proportion of overlooked seeds within the search radius.  

1) Model choice. We tested how often AIC based selection on truncated datasets yielded the 
'generating model' (the model from which the simulated dataset was actually created).  The results 
(Table S1) show that the AIC procedure selected the generating model in the majority of cases. Only 
in cases where the generating model can be approximated equally well by two models (as is the case 
with Weibull and the exponential) will AIC model selection give some problems. This is non‐critical as 
in these cases selection of a different yet practically equivalent model will not increase bias as the 
shape is equally well quantified by the wrongly selected but alternative model. Note that the Weibull 
can approximate the shape of the exponential and Gaussian. 

Table S1. The use of AIC to identify the distribution of a truncated dataset showed high accuracy, 
except for equivalent models (Exponential‐Weibull). Bold face indicates the proportion of the time 
when the generating model was selected with the simulations as best fitting model. 

Generating model  AIC selected model (after 1000 resamples) 
  Logormal  Weibull  Exponential  1DT 
Lognormal  98%  1%  0%  1% 
Weibull  1%  98%  1%  0% 
Exponential  0%  93%  7%  0% 
1DT  4%  0%  0%  96% 
 

2) Search radius. The effects of dispersal kernel shape on bias related to search radius was evaluated 
by varying the search radii so that 20‐80% of seeds fell outside, and then applying the CTR method. In 
general the results show that bias will increase when the generating distribution has a larger tail 
(Figure S2). 

3) False‐censoring. The effect of overlooking seeds within the search radius and including those seeds 
as censored observations was evaluated by varying the proportion of seeds overlooked for each 
simulated dataset from 0 and 50%. This was done by randomly removing 0 ‐ 50% of the seeds from a 
truncated dataset and treating them as censored for each of the simulated datasets. In general, the 
results show a similar pattern as the effect of search radius; bias increases when the generating 
distribution has a larger tail (Figure S2). This demonstrates the robustness of the CTR method to 
violations of this assumption for different dispersal kernel shapes. 



 

Fig S1: Effect of search radius on the bias of the CTR method applied to four simulated datasets. Bias 
is plotted against the proportion of tagged seeds recovered. Solid black lines indicate median bias for 
1000 simulated datasets; dashed lines indicate 95% CI (calculated as the 2.5 and 97.5 percentiles).  

 

 

 



 

Fig S2: Effect of overlooking seeds on the bias of the method applied to four simulated datasets. 
Plots show an increase in bias with the proportion of overlooked seeds. Solid black lines indicate 
median bias for 1000 simulated datasets, dashed lines indicate 95% CI (calculated as the 2.5 and 97.5 

percentiles).  
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