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abstract: The neutral theory of biodiversity challenges the classical
niche-based view of ecological communities, where species attributes
and environmental conditions jointly determine community com-
position. Functional equivalence among species, as assumed by neu-
tral ecological theory, has been recurrently falsified, yet many patterns
of tropical tree communities appear consistent with neutral predic-
tions. This may mean that neutral theory is a good first-approxi-
mation theory or that species abundance data sets contain too little
information to reject neutrality. Here we present a simple test of
neutrality based on species abundance distributions in ecological
communities. Based on this test, we show that deviations from neu-
trality are more frequent than previously thought in tropical forest
trees, especially at small spatial scales. We then develop a nonneutral
model that generalizes Hubbell’s dispersal-limited neutral model in
a simple way by including one additional parameter of frequency
dependence. We also develop a statistical method to infer the pa-
rameters of this model from empirical data by approximate Bayesian
computation. In more than half of the permanent tree plots, we show
that our new model fits the data better than does the neutral model.
Finally, we discuss whether observed deviations from neutrality may
be interpreted as the signature of environmental filtering on tropical
tree species abundance distributions.

Keywords: neutral theory, environmental filtering, community mod-
eling, approximate Bayesian computation.

Introduction

The processes that govern the assembly and functioning
of ecological communities are varied and complex (Ches-
son 2000; Chase and Leibold 2003). They include species
interactions (MacArthur 1972; Diamond 1975; Tilman
1982); dispersal limitation, that is, the inability of an or-

* Corresponding author; e-mail: franck.jabot@m4x.org.

Am. Nat. 2011. Vol. 178, pp. 000–000. � 2011 by The University of Chicago.

0003-0147/2011/17802-52496$15.00. All rights reserved.

DOI: 10.1086/660829

ganism to disperse or send offspring to a remote locale
(MacArthur and Wilson 1967; Clobert et al. 2001); and
environmental filtering. Environmental filtering refers to
the fact that individuals immigrating into a community
will be able to establish only if they pass through the
various environmental filters present in this community
(Mueller-Dombois and Ellenberg 1974; Zobel 1997; Keddy
1992). These filters may include abiotic stresses and biotic
pressures such as herbivory (Hillebrand et al. 2007).

Modeling the dynamics of ecological communities is
difficult due to the inherently complex dynamics of in-
teracting species (Lawton 1999; but see Simberloff 2004),
and for this reason, progress toward integrated community
dynamics models has been slow. One radical step toward
the construction of a simple and tractable community
model is Hubbell’s theory of biodiversity (Hubbell 2001;
Bell 2003). This theory is radical in assuming that all in-
dividuals have the same prospects of reproduction and
death irrespective of their age and size and of the species
they belong to. Hubbell (2001) considered that in a local
community, individuals experience random events of
death and recruitment irrespective of the species, so that
community size remains constant. Hence, the species com-
position fluctuates due to stochastic drift only. In addition,
Hubbell (2001) assumed that this local community is con-
nected to a regional pool via migration, so that a fraction
m of recruits is drawn from the regional pool rather than
from local offspring. The local community hence reaches
a dynamic equilibrium between stochastic local extinction
and the immigration of new species, while in the regional
pool, diversity is maintained by speciation. This speciation
is modeled at the individual level simply by assuming that
each new recruit has a small probability n of yielding a
new species, so that v new species appear in the system
on average per generation (where with JM thev p n # JM
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number of individuals in the regional pool). This param-
eter v can be estimated from species abundance data fol-
lowing a procedure first described by Hubbell (2001) and
formalized by Etienne (2005). A more detailed description
of Hubbell’s model is provided in “Nonneutral Model.”

Hubbell’s model offers a number of advantages com-
pared to previous theoretical models of community dy-
namics. First, it addresses whether the neutral approxi-
mation is sufficient to explain empirical patterns such as
species abundance distributions or species-area relation-
ships (McGill et al. 2006). Hence, the neutral model may
serve as a null model of community structure and dy-
namics (Leigh 2007). Second, Hubbell’s model offers a
simple way to incorporate basic features of metacom-
munity dynamics (Holyoak et al. 2005). Third, it is also
“tractable” in the sense that a mathematical analysis of the
model enables an exact computation of the expected spe-
cies abundance distribution (Vallade and Houchmand-
zadeh 2003; Volkov et al. 2003) and, even more remark-
ably, of a sampling formula , the probabilityP ({n } F {p })i j

of a given species abundance distribution in a sample,{n }i
given the model parameters (Etienne 2005; Etienne{p }j
and Alonso 2005). Through this formula, ecologists may
infer the two parameters v and m of Hubbell’s neutral
model from species abundance data based on likelihood
maximization.

With Hubbell’s neutral model and its associated method
of statistical inference, it has been possible to move beyond
qualitative comparisons of models of species coexistence
(Chave et al. 2002). It has also facilitated discussions on
issues that have traditionally remained outside of the realm
of classical community ecology. For instance, Latimer et
al. (2005) explained the diversity patterns in the South
African fynbos by the high diversification rate (high v) and
the dispersal characteristics (low m) of the plants of this
biome; Jabot and Chave (2009) showed that empirical phy-
logenetic tree shapes could be used to better infer the
neutral parameters. But the real strength of this inferential
framework is to make possible a direct quantitative com-
parison between neutral models and nonneutral ones
(Etienne and Olff 2005; Chave et al. 2006). In this regard,
Hubbell’s neutral model should be seen as the first step
toward more complex models that encapsulate more bi-
ology, and several authors have proposed such extensions
(Tilman 2004; Gravel et al. 2006; Adler et al. 2007). Yet it
is critical to realize that while the goodness of fit of the
neutral model may be estimated, more complex models
are not so easily compared against empirical data. For
instance, Volkov et al. (2005) extended the neutral model
to account for negative density-dependent effects, but this
came at the cost of ignoring dispersal limitation, an in-
tegral feature of Hubbell’s model. Moreover, the likeli-
hoods of alternative models were not compared, as is cus-

tomary in model comparison procedures (Chave et al.
2006). Thus, in spite of the already large literature on this
topic, nonneutral dynamic community models that could
be quantitatively fitted to species abundance data are sorely
lacking (but see Engen et al. 2002).

Before constructing complex nonneutral models, an im-
portant step is to check whether neutrality may be rejected
using a quantitative test for the system under study. Here,
we propose a novel test of neutrality based on species
abundance, inspired by Watterson’s homozygosity test in
population genetics (Watterson 1978). We then present a
nonneutral dynamical model that generalizes Hubbell’s
two-parameter dispersal-limited neutral model by adding
a nonneutral parameter d. The d parameter quantifies the
degree of conspecific frequency dependence in mortality
rates. This new parameter is then inferred from species
abundance distributions using an approximate Bayesian
computation (ABC) method (Beaumont et al. 2002; Jabot
and Chave 2009). Applying these two methods to empirical
species abundance data from permanent tropical forest
tree plots, we explore whether and how frequently a sig-
nificant deviation from neutrality is detected. We also ex-
plore which ecological mechanisms are consistent with the
observed deviation from neutrality and how this deviation
depends on the spatial extent of the plots. Finally we dis-
cuss the biological and theoretical implications of our find-
ings. The programs described in this article can be freely
downloaded at http://www.edb.ups-tlse.fr/equipe1/chave/
parthy.htm.

Benchmark Data

The methods developed below were benchmarked against
two empirical rain forest tree diversity data sets. Both data
sets are maintained by the Smithsonian Tropical Research
Institute Center for Tropical Forest Science (CTFS; Losos
and Leigh 2004; Condit et al. 2002, 2006).

The first data set consists of 10 large tropical tree plots
of the CTFS (20–52 ha in area) with a worldwide distri-
bution (table 1; data from Condit et al. 2006, supplemen-
tary information). In each plot, trees greater than 10 cm
diameter at breast height were tagged, mapped, and iden-
tified as to species. For one of these large plots, Barro
Colorado Island (BCI), Panama, we also had access to the
abundance data in the 50 1-ha subplots (data from Condit
et al. 2002, supplementary information). In one analysis
reported below, we studied how neutrality varied with spa-
tial scale. We performed this test using the BCI data set
by assembling the 1-ha plots into larger subplots of 4 and
10 ha.

The second data set contains 50 plots between 0.36 and
1 ha in size that were established across the Panama Canal
Zone (which extends between the Pacific and the Atlantic
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Table 1: Neutrality test in the large plots (20–52 ha, including all trees 110
cm in trunk diameter) of the Smithsonian Tropical Research Institute Center
for Tropical Forest Science

Location, site Area (ha) J S H d P value

Panama:
BCI (1982) 50 20,788 236 4.29 .06 .103
BCI (1985) 50 20,640 235 4.28 .09 .095
BCI (1990) 50 21,176 227 4.27 .04 .097
BCI (1995) 50 21,404 225 4.26 .04 .107
BCI (2000) 50 21,148 225 4.26 .07 .083

Ecuador:
Yasuni 50 16,804 828 5.47 .40 !.001

Colombia:
La Planada 25 14,103 167 3.98 .03 .37

Dem. Rep. Congo:
Edoro 20 8,684 208 3.67 .56 !.001
Lenda 20 7,107 212 2.71 .80 !.001

India:
Mudumala (1988) 50 15,033 62 2.51 .33 .089
Mudumalai (1992) 50 14,028 63 2.47 .40 .062
Mudumalai (1996) 50 13,070 63 2.39 .46 .04

Sri Lanka:
Sinharaja 25 16,838 171 3.83 .19 .224

Thailand:
Huai Kha Khaeng 50 21,446 240 3.80 .45 .001

Malaysia:
Pasoh (1987) 50 26,550 678 5.65 �.10 .273
Pasoh (1990) 50 27,659 666 5.65 �.17 .382
Pasoh (1995) 50 29,257 674 5.66 �.16 .379
Lambir 52 29,890 990 5.94 .05 !.001

Note: J is the total number of trees in the census, S the number of species, H the empirical

evenness, d the value of the nonneutral parameter as inferred by the approximate Bayesian

computation method (see main text), and P value the significance of the neutrality test (see

main text). Bold numbers indicate P values under .05.

oceans) using the same sampling procedure (Condit et al.
2002, supplementary information; see also Pyke et al. 2001;
Engelbrecht et al. 2007). These 50 plots contained a total
of 20,231 individuals belonging to 781 tree species (Condit
et al. 2002).

Neutrality Test

Methods

Previous neutrality tests based on species abundance dis-
tributions have consisted of comparing the neutral fit to
the prediction of alternative phenomenological models
such as the lognormal distribution (McGill et al. 2006).
Such procedures do not evaluate the ability of the neutral
model to reproduce observed data: the fact that a neutral
model is a better or a worse fit than a lognormal model
says little about the ability of both models to reproduce
field data satisfactorily. An exception is the test devised by
Etienne (2007), which is designed for the particular case

where several sampling sites within the same region are
available.

Here we build on Watterson’s homozygosity test of neu-
trality in molecular evolution to design such a test (Wat-
terson 1978). We first fitted the neutral parameters v and
m by maximum likelihood based on the entire species
abundance distribution (Etienne 2005). Parameter esti-
mation was performed using the freeware TeTame (Jabot
et al. 2008, http://www.edb.ups-tlse.fr/equipe1/chave/
tetame.htm). These neutral parameters are then used to
simulate 1,000 neutral species abundance distributions for
each study plot, fixing the numbers J of individuals and
S of species to their observed value in any given plot. We
use the algorithm of Etienne (2005) to simulate neutral
communities and retain only the simulated communities
in which the number of species equals S. In each simulated
neutral community, we compute Shannon’s entropy H
(also called evenness), which is defined by

( )H p � p ln p . (1)� i i
i

q3
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Figure 1: Deviation from neutrality in the Smithsonian Tropical Research Institute Center for Tropical Forest Science plots. The upper five
panels deviate significantly from neutrality, while the lower five do not. The black lines represent neutral species rank abundance curves
averaged over 1,000 simulations with best-fit neutral parameters (see “Methods”), gray bars indicate standard deviations, and the red lines
indicate observed rank abundance curves.

The evenness is bounded by 0 and . This set ofln (S)
1,000 values for H computed from communities simulated
with Hubbell’s neutral model form a null distribution
against which the empirical observation may be compared
(appendix). If the observed H value falls outside of the
null distribution, we conclude that the neutral model is
unable to model the shape of the species abundance dis-
tribution. This test detects deviations from neutrality
since the range of H values found in communities sim-
ulated with Hubbell’s neutral model is much smaller than
[0; ] (see fig. A1; Jabot and Chave 2009). By con-ln (S)
straining the simulated samples to have the same richness
S, the test does not assess the ability of the neutral model
to reproduce S. This is because any value of S may be
obtained by tuning the parameters of a neutral model
(Hubbell 2001).

Results

When applied to the large (20–52 ha) plots, our test de-
tected significant deviations from neutrality in half of the
plots. In these nonneutral plots, best-fit neutral commu-
nities had a significantly higher evenness than the observed
value. When several censuses of the same plot were avail-
able, the deviations were consistent across years (table 1).
In the plots where significant deviations from neutrality

could be detected, a few species were overabundant com-
pared with the neutral expectation (fig. 1). These over-
abundant species caused a decrease in community even-
ness that our neutrality test detected. When applied to the
network of small (0.36–1 ha) plots, half of the plots were
again significantly nonneutral according to our test (table
A1).

Finally, we tested whether the spatial size of the plots
had an influence on our test of neutrality. In the 50-ha
BCI plot, nonneutrality was detected in 36% of the 1-ha
subplots, in 30% of the 4-ha subplots, and in 20% of the
10-ha subplots (1 out of 5), while in the full 50-ha BCI
plot, the deviation from neutrality was no longer
significant.

Nonneutral Model

Model Description

In the previous section we showed that Hubbell’s neutral
model is unable to fit species abundance data for half of
the rain forests data sets that we included in our analysis.
This was the primary motivation for building a simple
nonneutral extension of Hubbell’s model to assess the po-
tential role of one ecological mechanism likely to produce
this deviation from neutrality. In Hubbell’s neutral model,

q4

q5



A Nonneutral Model of Species Abundance E5

Tuesday Jun 07 2011 09:30 AM/AN52496/2011/178/2/stansino/millerd//article in qc1/use-graphics/narrow/

earticle/

one individual dies per time step, and this individual is
immediately replaced by an offspring coming from a re-
gional species pool of size JM (probability m) or from the
surviving residents (probability ). The probability1 � m
that species i gains 1 individual while species j loses 1
individual (with ) is given by the state transitioni ( j

(t) (t)N Nj i (t)P p # (1 � m) � mx , (2)ji i[ ]J J � 1

where is the abundance of species i at time t, J is the(t)Ni

local community size, m is the immigration rate, and
is the regional relative abundance of species i at time(t)xi

t. In the regional species pool, the dynamics is panmictic
and neutral. Individuals die sequentially as in the local
community, they are replaced by the offspring of randomly
drawn surviving individuals, and the newly recruited in-
dividuals belong to an altogether new species with a small
probability n, so that v new species appear in the system
on average per generation. Etienne (2005) derived a like-
lihood formula based on species abundance data for the
parameters v and m and showed that a more rigorous
definition for v was

n # (J � 1)M
v p ≈ n # J . (3)M1 � n

Our nonneutral generalization of Hubbell’s neutral model
is as follows. At each time step, we let an individual from
species j die with probability qj:

(t) 1�d( )Nj

q p , (4)j S (t) 1�d( )� Nkkp1

where d is a new parameter. Here again, a vacant site is
immediately filled by the offspring of a randomly chosen
individual in the local community (with probability 1 �

) or from the regional pool (with probability m). Equa-m
tion (2) is then replaced by

(t) 1�d (t)(N ) Nj i (t)P p # (1 � m) � mx . (5)ji iS [ ](t) 1�d J � 1� (N )kkp1

When , equations (2) and (5) are equal. For instance,d p 0
when d is negative, individuals of abundant species face
increased mortality rates compared with individuals of rare
species (negative frequency dependence). When d is pos-
itive, individuals of rare species face increased mortality
rates compared with those of abundant species (positive
frequency dependence).

When nonzero values for d are selected , the simulated
communities may have an evenness H that falls outside
the range typically produced by Hubbell’s neutral model
(fig. A1): with positive values of d, the evenness will be

lower than in neutral communities, while with negative
values it will be higher. This model is nonneutral in a
particular sense: species with different abundances have
different demographic rates. However, any two species
with exactly the same abundance are strictly equivalent
demographically. The model is thus symmetric sensu
Alonso et al. (2008). A symmetric model is a natural first
generalization of Hubbell’s model when species-specific
data are unavailable (see also Volkov et al. 2005).

Fitting the Nonneutral Model by ABC Inference

Approximate Bayesian computation (Beaumont et al.
2002) is a method of statistical inference that may be used
to assess the goodness of fit of even complex models. We
use ABC to infer d from species abundance distributions.
Specifically, we simulate a large number of communities
with the three model parameters v, m, and d drawn from
prior distributions. Each simulated community is used to
compute a set of two summary statistics—the species rich-
ness S and Shannon’s entropy H (see Jabot and Chave
2009)—and the quality of the fit is assessed by computing
a distance between the summary statistics of the simulated
community (Ssim, Hsim) and that of the empirical data (Sdata,
Hdata). More precisely, we computed the Euclidean distance
d after having normalized each statistics by its variance,
as recommended by Beaumont et al. (2002):

2 2(S � S ) (H � H )sim data sim data�d p � , (6)
Var (S ) Var (H )sim sim

where and are the variances of SsimVar (S ) Var (H )sim sim

and Hsim among the simulated communities. Only a frac-
tion of the simulations, the ones closest to the empirical
observations, were retained (lowest d values), and the pa-
rameters corresponding to these retained simulations were
used to compute an approximate posterior distribution
for the parameters. Since our goal is to estimate solely the
marginal posterior distribution on d, two summary sta-
tistics were found to be sufficient (appendix).

As mentioned above, the ABC method is based on sim-
ulating the model for a wide array of parameter values.
Further details on the algorithms used in the simulations
may be found in the appendix. Here we briefly explain
the major steps. To simulate the nonneutral model, we
proceed in two steps. First, we simulate by coalescence a
large neutral regional species pool of size Jn with neutral
parameters and drawn from a flat prior on [0;ln (v) ln(I)
10], where I is related to m by (Etienne 2005)

m # (J � 1)nI p . (7)
1 � m

The choice of the prior for and is based onln (v) ln (I)

q6
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our empirical knowledge of the data and should be re-
appraised on a case-by-case basis. We henceforth use the
scaled immigration rate I instead of m because I has com-
parable statistical properties to v (Etienne 2005). We de-
fined prior distributions on and instead of vln (v) ln (I)
and I because the summary statistics such as richness and
evenness respond to variations in order of magnitudes of
v and I (Hubbell 2001; fig. 1 in Jabot and Chave 2009).
The boundaries of the priors were chosen to encompass
previously empirically estimated parameter values.

A local community of size J is then drawn from the
regional pool, where J is the size of the real sampled com-
munity, such that . This local community is used asJ k Jn

an initial condition, from which the nonneutral dynamics
starts. The nonneutral dynamics cannot be simulated by
coalescence, since the symmetry among individuals no
longer exists (Ewens 2004). We therefore use a forward-
in-time algorithm run until a dynamic equilibrium is
reached. For this simulation step, we use a parameter d

drawn from a flat prior distribution on [�1; 1]. This prior
explores a wide range of situations. When d equals 1, in-
dividuals of abundant species have such a low death prob-
ability compared with those of rare species that death rates
at the species level are independent of species abundances.
When d equals �1, death rates of individuals of rare spe-
cies are considerably lower than those of individuals of
abundant species. We chose to model nonneutrality during
the mortality phase for the sake of simplicity (see also
Chave et al. 2002). We also studied a model where fre-
quency dependence is acting at the recruitment phase and
obtained similar results.

For each plot of the benchmark data set, we simulated
a total of 200,000 communities and retained the 1,000
communities that had the smallest distance d to empirical
data (eq. [6]). We then computed the approximate pos-
terior parameters distribution from the distribution of the
1,000 best-match parameters in the parameter space. To
smooth the distribution, we used the routine “density” in
R, with a bandwidth equal to 0.2 (R Development Core
Team 2009). This bandwidth was chosen based on sim-
ulated data sets. We then inferred the value of d from the
mode of the marginal posterior d distribution.

Test of the Method with Simulated Data

To assess the performance of the ABC method, we sim-
ulated artificial data sets with known model parameter
values and evaluated the ability of our ABC method to
recover these parameter values. Since the efficiency of the
ABC inference is likely to depend on both sample size J
and species richness S in the observed data, we repeated
our test of inference efficiency for the different values of
empirically observed J and S. For each of the 50 plots, we

recorded the empirical values of J and S. Then, for each
(J, S), we simulated 100 communities with different d val-
ues. Using ABC, we then inferred the d values from each
of these simulated data sets, and we compared100 # 50
the input d value to the one inferred in each of the plots
(hence yielding 50 different R2 values). The R2 values were
always greater than 0.55 ( ) except in onemedian p 0.77
case (where ) for which J was small and S un-2R p 0.27
usually large (appendix; fig. A2). The slopes of these re-
gressions were close to 1, and the intercept was close to
0 (appendix). We further computed the percentage of sim-
ulations in which inferred d had the same sign as the
simulated one: it was always greater than 77%
( ). Similar analyses were performed withmedian p 87%
(J, S) values corresponding to values in large plots and
yielded similar results. Hence, our inference method infers
d with reasonable accuracy from tropical tree species abun-
dance distributions.

Application to the Benchmark Data

We then estimated the parameters of our nonneutral
model in the tropical forest tree plots. In all the large plots
except in Pasoh, we found positive d values (table 1). The
fit provided by our nonneutral model for the entire species
abundance distributions was also more satisfactory than
the fit of the neutral model (fig. A3). Similarly, in the 1-
ha plots of the Panama Canal watershed, inferred d values
were positive in the majority of the plots (fig. 2A). In the
Panama Canal watershed plot network, we also found that
d values were negatively correlated with dry-season rainfall
(fig. 2B; , , ; rainfall data from2n p 39 R p 0.23 P p .002
Pyke et al. 2001). In other terms, drier plots had larger d

values.
We also found that the size of the plots had an influence

on measured deviations from neutrality: in the 50-ha BCI
plot, the mean posterior distribution of d was wider in
small subplots than in large ones, and its mode decreased
toward smaller d values as plot size increased (fig. 3).

Discussion

Departure from Neutrality in Tropical Rain Forests

Hubbell’s (2001) proposal that neutral theory adequately
reproduces patterns of species abundance has generated a
great deal of controversy (reviewed in McGill et al. 2006;
Leigh 2007). Previous tests of neutrality have compared
the fit of neutral models to that of alternative phenome-
nological models such as the lognormal model (McGill et
al. 2006). These tests disregard the fact that the neutral
model is not always capable of reproducing precisely the
observed biodiversity patterns in terms of abundance



A Nonneutral Model of Species Abundance E7

Tuesday Jun 07 2011 09:30 AM/AN52496/2011/178/2/stansino/millerd//article in qc1/use-graphics/narrow/

earticle/

Figure 2: Deviation from neutrality and environmental filtering in the Panama Canal watershed (PCW). A, Estimated d in the PCW tree
plots ( ). Fifty percent of the forest plots have d values significantly different from 0, all due to positive d values. B, Correlationn p 50
between d and the amount of rainfall during the dry season (mm) in the PCW tree plots; ( , ).2R p 0.23 P p .002 n p 39

Figure 3: Variation of d with sample size in the 50-ha BCI tree plot.
For each area size, we summed the approximate posterior distri-
bution of d over the subplots (50 1-ha subplots, 10 4-ha subplots,
and 5 10-ha subplots). The gray levels in the figure indicate the
approximate posterior density distribution, and the black lines stand
for percentiles 2.5, 25, 75, and 97.5 of the posterior distribution.

evenness. Here we proposed a test based on Shannon’s
index H and found that neutrality could be rejected in
half of the tropical forest tree plots we studied. This sug-
gests that departures from neutrality may be more per-
vasive than previously reported in tropical forests.

In our worldwide comparison of the large CTFS plots,
departures from neutrality, as measured by the community
evenness H, could be explained by the overabundance of
a limited number of species (fig. 1). Remarkably, there was
no clear relation between the overabundance of a species
and its relative abundance within the community. At Lam-
bir, for instance, the canopy dipterocarp species Dryoba-
lanops aromatica, representing only 2.4% of the stems, was
overabundant while Mesua nagassarium, the first-ranking
species in Sinharaja (12.2% of the stems, was not. This
result suggests that the status of species overabundance
should be gauged against the predictions of suitable null
model, here Hubbell’s neutral model.

This deviation from neutrality was then quantified
mechanistically using a simple nonneutral generalization
of Hubbell’s model. We found that this model was better
able to reproduce empirical patterns of species abundance
than Hubbell’s neutral model. In most of the cases, positive
frequency dependence ( ) was found to better described 1 0
species abundance patterns than Hubbell’s neutral model
( ). This is consistent with the reanalysis of Volkovd p 0
et al.’s (2005) model, which showed that a model with
negative density dependence performs worse than a neu-
tral model in tropical tree plots (Chave et al. 2006). This
combination of results may seem contradictory with the
numerous studies attesting the prominent role of negative
density and frequency dependence in the maintenance of

tropical tree diversity (Janzen 1970; Connell 1971; Harms
et al. 2000; Wills et al. 2006; Comita et al. 2010; Gonzalez
et al. 2010). From this contradiction, we can draw two
insights. First, negative density dependence, although pre-
sent, does not seem to have a detectable impact on the
shape of the species abundance distribution in tropical tree
communities we tested here, or more plausibly, its impact
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is counterbalanced by another process. Second, our model
may provide good fits to species abundance distributions
but for the wrong reason. Our nonneutral model with
positive d values outperforms Hubbell’s neutral model be-
cause it yields less even abundance distributions, not be-
cause the system shows positive frequency-dependent dy-
namics. Any ecological mechanism other than positive
frequency dependence, which would yield a decrease in
abundance evenness, is consistent with our results. One
such mechanism is environmental filtering.

Interpreting d as a Measure of Environmental Filtering

The role of environmental filtering in the distribution and
abundance of tropical tree species has been recurrently
demonstrated from the seedling to the adult stage (Plotkin
et al. 2000; Valencia et al. 2004; John et al. 2007; Norden
et al. 2009). Species that show specific adaptations for local
environmental conditions are likely to be more abundant
in their preferred environment (Bazzaz 1991). Conse-
quently, in environmentally filtered communities, species
abundances should be less even than in neutral commu-
nities (Jabot 2010). Positive values of d could thus be a
signature of environmental filtering.

Consistent with our interpretation that positive d values
are a signature of environmental filtering, we observe that
drier plots have larger d values in Panama (fig. 2B). En-
gelbrecht et al. (2007; fig. 2A, 2B) showed empirically that
drought-intolerant tree species tend to be excluded from
drought-prone sites, while drought-tolerant tree species
are less often excluded in humid sites. Hence, environ-
mental filtering caused by drought is expected to be stron-
ger in drier sites.

Similarly, observed departures from neutrality in the
large CTFS plots are likely related, at least in part, to the
occurrence of environmental stresses, in particular,
drought events (Losos and Leigh 2004): Edoro, Huai Kha
Khaeng, and even more Mudumalai all face relatively in-
tense drought periods, and Lambir, although very wet,
experiences brief and severe droughts due to shifts in mon-
soonal wind trades. In contrast, La Planada, Sinharaja, and
Pasoh all experience very wet or only slightly seasonal
climates, consistent with our finding that these plots do
not depart from neutrality. The Mudumalai plot was some-
what of an outlier in this analysis. Indeed, in this site
species abundances are also altered by elephant browsing
and understory fires, yet patterns of tree species abun-
dances were only marginally nonneutral.

Abiotic environmental filtering was unlikely to be the
unique cause of departure from neutrality. A few species
rather seemed to be overabundant because of their in-
trinsic biology. The Lenda plot is dominated by the mono-
dominant legume tree Gilbertiodendron dewevrei. In trop-

ical forests, monodominance has been traditionally
explained by various mechanisms of intraspecific facili-
tation, such as local modification of shading level, litter
properties (Torti et al. 2001), or increased nutrient uptake
through mycorrhizal networks (McGuire 2007). Local
overabundance can also result from the species abundance
structure at the regional scale. The two most abundant
species in Yasuni, the palm Iriartea deltoidea and the tree
Eschweilera coriacea, are members of the plant oligarchy
that dominates vast expanses of the western Amazonian
forest (Pitman et al. 2001). In Edoro, a similar pattern was
observed, with Cynometra alexandri, Diospyros bipidensis,
Julbernardia seretii, and Pancovia harmsiana, four over-
abundant species that were also overabundant in the Lenda
plot, some 35 km away.

Dependence of the Neutrality Assumption
with Spatial Scale

One troubling feature surrounding neutral theory is that
while large samples may present neutral patterns of species
abundances (e.g., Hubbell 2001), deviations from neu-
trality are observed when species distributions are explored
at smaller spatial scales (e.g., John et al. 2007). Here, we
were able to test whether deviations from neutrality were
indeed scale dependent. If different environmental filtering
processes operate across localized habitats, the overall fil-
tering signal may be blurred in large samples. Confirming
this prediction, we detected a nonneutral signal at fine
spatial scales within the 50-ha plot on Barro Colorado
Island, and this signal decreased as plot size increased. This
provides evidence that even though Hubbell’s neutral
model suitably approximates species abundance distri-
butions at a coarse-grained spatial scale, nonneutral pro-
cesses are relevant to explaining plant species coexistence
at a fine-grained scale, the scale that matters the most to
individual performance (Plotkin et al. 2000; Tuomisto et
al. 2003; Svenning et al. 2004; John et al. 2007). Conse-
quently, the choice of sampling scale is crucial in the de-
tection of ecological processes. In small and homogeneous
plots, the species abundance distributions are more likely
to deviate from neutrality than in large, heterogeneous
ones.

Modeling Community Dynamics

We offered a simple nonneutral extension of Hubbell’s
dynamic model, which may be used to quantify potential
deviations from neutrality. One of the main issues with
previous models of community dynamics has been the
difficulty in relating these dynamical models to static data.
Numerous methods have been developed to extract rele-
vant statistical information from ecological data sets (Su-
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gihara and May 1990; Clark 2007), but they are mainly
designed to analyze dynamical ecological data sets, so that
the validity of the model assumptions may be directly
compared to the observed dynamics. Such methods are
difficult to extend to static data; they require the com-
putation of a likelihood function, the probability of ob-
serving the static data (i.e., pattern) under the model as-
sumption and for particular parameter values. This is a
mathematical challenge in models of biodiversity, except
in special cases (such as the neutral one; Etienne 2005).
This limitation can be alleviated through computer-inten-
sive techniques such as approximate Bayesian inference.
Our study is one of the first applications of this type of
inference in ecology. This method is flexible, and it is now
commonplace in population genetics (Marjoram and Ta-
varé 2006; Csilléry et al. 2010). It should also be of great
use in future ecological studies. We emphasize that in our
use of the ABC method, we assumed a flat prior distri-
bution for the parameters. In this sense, we really imple-
mented an approximate maximum likelihood method and
did not depart from the frequentist approach to statistical
inference.

Here, we propose one possible model of nonneutrality.
Despite its limitations, the advantage of our model is that
it relaxes the demographic equivalence in a simple way
and avoids a great inflation in the number of model pa-
rameters—a single new parameter is added. In addition,
our model does not preclude a mechanistic interpretation
of the results. Here, we were led to conclude that the
tropical tree communities we analyzed were more likely
shaped by environmental filtering than by positive fre-
quency dependence. Additional data on species charac-
teristics for entire communities will be critical to param-
eterize more-detailed community dynamic models,
including ones that explicitly model environmental filter-
ing (McGill et al. 2007; Jabot 2010).
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batier (ATUPS) grant of the University of Toulouse. The
Barro Colorado Island forest dynamics research project
was made possible by National Science Foundation grants

to S. P. Hubbell; support from the Smithsonian Tropical
Research Institute Center for Tropical Forest Science, the
John D. and Catherine T. MacArthur Foundation, the Mel-
lon Foundation, the Celera Foundation, and numerous
private individuals; and through the hard work of more
than 100 people from 10 countries over the past 2 decades.
The plot project is part of the Center for Tropical Forest
Science, a global network of large-scale demographic tree
plots.

Literature Cited

Adler, P. B., J. HilleRisLambers, and J. M. Levine. 2007. A niche for
neutrality. Ecology Letters 10:95–104.

Alonso, D., A. Ostling, and R. S. Etienne. 2008. The implicit as-
sumption of symmetry and the species abundance distribution.
Ecology Letters 11:93–105.

Bazzaz, F. A. 1991. Habitat selection in plants. American Naturalist
137(suppl.):S116–S130.

Beaumont, M. A., W. Y. Zhang, and D. J. Balding. 2002. Approximate
Bayesian computation in population genetics. Genetics 162:2025–
2035.

Bell, G. 2003. The interpretation of biological surveys. Proceedings
of the Royal Society B: Biological Sciences 270:2531–2542.

Chase, J. M., and M. A. Leibold. 2003. Ecological niches: linking
classical and contemporary approaches. University of Chicago
Press, Chicago.

Chave, J., H. Muller-Landau, and S. Levin. 2002. Comparing classical
community models: theoretical consequences for patterns of di-
versity. American Naturalist 159:1–23.

Chave, J., D. Alonso, and R.S. Etienne. 2006. Theoretical biology:
comparing models of species abundance. Nature 441:E1.

Chesson, P. L. 2000. Mechanisms of maintenance of species diversity.
Annual Review of Ecology and Systematics 31:343–366.

Clark, J. S. 2007. Models for ecological data: an introduction. Prince-
ton University Press, Princeton, NJ.

Clobert, J., E. Danchin, A. A. Dhondt, and J. D. Nichols. 2001.
Dispersal. Oxford University Press, Oxford.

Comita, L. S., H. C. Muller-Landau, S. Aguilar, and S. P. Hubbell.
2010. Asymmetric density dependence shapes species abundances
in a tropical tree community. Science 329:330–332.

Condit, R., N. Pitman, E. G. Leigh Jr., J. Chave, J. Terborgh, R. B.
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Marjoram, P., and S. Tavaré. 2006. Modern computational ap-
proaches for analyzing molecular genetic variation data. Nature
Reviews Genetics 7:759–770.

McGill, B. J., B. A. Maurer, and M. D. Weiser. 2006. Empirical eval-
uation of neutral theory. Ecology 87:1411–1423.

McGill, B. J., R. S. Etienne, J. S. Gray, D. Alonso, M. J. Anderson,
H. Kassa Benecha, M. Dornelas, et al. 2007. Species abundance
distributions: moving beyond single prediction theories to inte-
gration within an ecological framework. Ecology Letters 10:995–
1015.

McGuire, K. L. 2007. Common ectomycorrhizal networks may main-
tain monodominance in a tropical rain forest. Ecology 88:567–
574.

Mueller-Dombois, D., and H. Ellenberg. 1974. Aims and methods
of vegetation ecology. Wiley, New York.

Norden, N., J. Chave, P. Belbenoit, A. Caubère, P. Châtelet, P.-M.
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