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ABSTRACT

Aim To develop and test a simple climate-based ecophysiological model of above-
ground biomass – an approach that can be applied directly to predicting the effects
of climate change on forest carbon stores.

Location Humid lowland forests world-wide.

Methods We developed a new approach to modelling the aboveground biomass
of old-growth forest (AGBmax) based on the influences of temperature on gross
primary productivity (GPP) and what we call total maintenance cost (TMC), which
includes autotrophic respiration as well as leaf, stem and other plant construction
required to maintain biomass. We parameterized the models with measured carbon
fluxes and tested them by comparing predicted AGBmax with measured AGB for
another 109 old-growth sites.

Results Our models explained 57% of the variation in GPP across 95 sites and
79% of the variation in TMC across 17 sites. According to the best-fit models, the
ratio of GPP to maintenance cost per unit biomass (MCB) peaks at 16.5 °C, indi-
cating that this is the air temperature leading to the highest possible AGBmax when
temperatures are constant. Seasonal temperature variation generally reduces pre-
dicted AGBmax, and thus maritime temperate climates are predicted to have the
highest AGBmax. The shift in temperatures from temperate maritime to tropical
climates increases MCB more than GPP, and thus decreases AGBmax. Overall, our
model explains exactly 50% of the variation in AGB among humid lowland old-
growth forests.

Main conclusions Temperature plays an important role in explaining global
variation in biomass among humid lowland old-growth forests, a role that can be
understood in terms of the dual effects of temperature on GPP and TMC. Our
simple model captures these influences, and could be an important tool for pre-
dicting the effects of climate change on forest carbon stores.
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INTRODUCTION

Forests around the world vary tremendously in the sizes of trees

and thus in their aboveground biomass (AGB). People have long

marvelled at the exceptionally large trees of certain regions such

as western coastal North America, and sought to understand

why such large trees are found in these areas and not others.

Temperature and rainfall, and their seasonal patterns, are clearly

important factors, and are the basis for phenomenological

models of forest type, such as those that define biomes

(Rumney, 1968). These models are useful in summarizing pat-

terns, but provide limited insights into the underlying processes,

and at best a weak basis for generalizing to novel climate regimes

expected under global climate change. Atmospheric and climate

change are hypothesized to be changing AGB and thereby global

forest carbon stores (Phillips et al., 1998; Myneni et al., 2001;
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Chave, 2008; Lewis et al., 2009), but the mechanisms, direction

and magnitude of such changes continue to be a subject of

intense debate (Wright, 2005). Models that capture the contri-

bution of spatial variation in climate to spatial variation in forest

carbon stores in extant forests could provide important insights

into how changing climates will affect forest carbon stores in the

long term.

Spatial variation in forest AGB has been related to climate in

a number of previous studies. Climate explains a small propor-

tion of AGB variation in regional studies of tropical forests in

the Amazon (Malhi et al., 2006) and Borneo (Slik et al., 2010).

The climate effects are similar in both regions with high annual

precipitation and low seasonality associated with high AGB.

However, the non-climatic effects are contradictory as wood

density was a significant positive correlate of AGB in the

Amazon but not in Borneo, and soil fertility in Borneo but not

in the Amazon. Along elevational gradients within the tropics,

AGB declines as elevation increases (Kitayama & Aiba, 2002;

Raich et al., 2006), a pattern Raich et al. (2006) attributed to the

decline in temperature. However, many other factors also

change with elevation and could confound these results, includ-

ing solar insolation (cloudiness), air pressure (which can

directly affect photosynthesis; see Gale, 1972), slope, soil stabil-

ity and species richness. On global scales, AGB does not gener-

ally increase with temperature, as the highest AGB is found in

some moist temperate forests, though there is tremendous varia-

tion in AGB among moist temperate forests (Keith et al., 2009).

In an analysis of 276 forest plots of 0.1 ha in the Americas,

Stegen et al. (2011) found that AGB was inversely related to

mean annual temperature among wet tropical forest sites and

positively related among moist tropical forests, and that annual

precipitation was positively related to biomass in both temper-

ate forests and dry tropical forests. All relationships were weak,

but this could be due in part to the small plot size and associated

sampling error. Stegen et al. (2011) noted that forest biomass in

these plots was highly correlated with the size of the largest tree

(a result that may in part reflect their small plot size), and

concluded that climatically variable hydraulic limitations on

tree size are important in driving variation in forest biomass.

Specifically, they suggested that high AGB forests are not found

in dry climates because of hydraulic limits on water transporta-

tion in individual trees, while other factors determine AGB in

moist climates.

By definition, old-growth forest biomass is the biomass at

which gains from tree growth and recruitment are balanced by

losses due to the deaths of trees and parts of trees. It has long

been thought that high productivity leads to higher biomass,

and this idea was supported by some older studies (reviewed by

Keeling & Phillips, 2007). However, when tropical plots are

included it becomes evident that net primary productivity

(NPP) is not correlated with AGB: the highest AGB is found in

moist temperate forests with intermediate NPP, and the highest

NPP in tropical forests with intermediate AGB (Keeling & Phil-

lips, 2007). Certainly, increases in NPP would be expected to

lead to proportional increases in old-growth forest biomass if

the proportion of biomass lost to mortality (of trees, branches

and leaves), henceforth the turnover rate, were unchanged. But

clearly, this is not the case, and efforts to understand old-growth

forest biomass mechanistically must consider more than just

productivity. Unfortunately, though above-ground NPP can be

measured relatively easily and modelled based on climate, turn-

over rates depend not only on extrinsic factors but also strongly

on the life-history strategies of trees, making it difficult to

develop mechanistic models for turnover from abiotic site

characteristics.

Our approach is to focus instead on the balance of total

carbon revenue of plants, or gross primary productivity (GPP),

versus total plant carbon expenditures on the maintenance plant

biomass, which we refer to as total maintenance cost (TMC).

There are various advantages to working with GPP and TMC

rather than NPP and turnover. Climate drives photosynthesis

and therefore GPP of closed-canopy forests more directly than

NPP, as there is neither biological rationale nor empirical evi-

dence for a constant ratio of NPP to GPP (Zhang et al., 2009).

Furthermore, the ratio of NPP to GPP decreases during succes-

sion as larger tree trunks require more autotrophic respiration,

while GPP is relatively constant after canopy closure (Mäkelä &

Valentine, 2001). GPP can be estimated with eddy-covariance

methods (Baldocchi, 2008) or from remote sensing (Jahan &

Gan, 2009) or climate (Beer et al., 2010). Finally, it is relatively

easier to model the effect of climate on TMC than on turnover,

because TMC is composed not only of those turnover rates that

are difficult to model (including both tree mortality and regular

replacement of tree parts, e.g. leaves), but also of autotrophic

respiration, the temperature sensitivity of which has been

studied in depth.

Here, we present our novel GPP- and TMC-based approach to

modelling the above-ground biomass of old-growth forest

(AGBmax), parameterize the GPP and TMC models, and test

them by comparing predicted AGBmax to measured AGB in 109

humid old-growth sites around the world. Our models do not

consider the impacts of water stress, fire and browsing, impacts

that are common in arid climates and which are difficult to

model (Sankaran et al., 2005), nor do they include low air pres-

sure, steep slopes and low species diversity that affect biomass at

high elevations. Thus, we restrict our modelling and analyses to

humid, lowland areas, areas that encompass a majority of the

world’s forests.

METHODS

GPP model

Our GPP model for humid, lowland forests is based in large part

on simple functional forms from the literature. We assumed

GPP is a function of sun elevation, q, temperature, T, and the

difference in mean temperature from the previous month, DT.

In the absence of atmospheric diffraction, the amount of solar

radiation arriving per unit area would be proportional to the

sine of sun elevation (sin q). However GPP is not proportional

to energy arriving per unit area (Pallardy, 2008) because photo-

synthetic rates asymptote at sufficiently high radiation (Pallardy,
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2008) and because diffuse radiation is used more efficiently than

direct radiation (Gu et al., 2002) and the proportion of diffuse

radiation depends on sun elevation (Spitters et al., 1986). There-

fore we assumed that GPP increases as a power function of sin q,

and chose the exponent 0.7 based on eddy-covariance data from

Hyytiälä, Finland (P. Kolari, pers. comm.).

We modelled the influence of temperature on GPP as a uni-

modal function that dropped to zero at temperatures below Tmin

or above Tmax, and was proportional to (T – Tmin)2(Tmax – T) at

intermediate temperatures (Lenton & Huntingford, 2003). Inhi-

bition of photosynthesis at high and at low temperatures has

multiple causes, and the general pattern of a slow rise and rapid

decline with rising temperature is well established (Pallardy,

2008).

Effects of changes in temperature on plants via acclimation of

plant energetics are complex (Pallardy, 2008). Since the available

data were on monthly rather than daily time-scales, we assumed

that the penalty of acclimation for GPP is proportional to the

absolute difference in mean temperature from the previous

month (Mäkelä et al., 2008). Combining these factors, our equa-

tion for GPP is thus

GPP

and
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where g, Tmin, Tmax, and m are fitted parameters (Tmin and Tmax are

the lower and upper bounds on the temperatures at which pho-

tosynthesis can occur). Note that under this model GPP does

not depend on biomass, as we restrict our attention to forests

after canopy closure, after which both leaf area index (LAI) and

GPP become relatively constant (Goulden et al., 2011) (though

hydraulic limitation can lead to reductions in GPP for very tall

trees; Ryan et al., 2004).

Maintenance cost and AGB models

Like the model for GPP, our model for maintenance costs for the

most part follows simple functional forms found in the litera-

ture. We assumed that TMC is influenced by temperature, T,

difference in mean temperature from the previous month, DT,

and AGB. Since the influence of temperature on turnover is not

well known we assumed the autotrophic respiration component

of TMC dominated the temperature–TMC relationship and

assumed a Q10 function (Ryan, 1991), as this is the dominant

approach to representing the temperature sensitivity of respira-

tion (Mahecha et al., 2010). In the same way as with GPP we

assumed that the penalty of acclimation is proportional to the

absolute difference in mean temperature from the previous

month. We further modelled maintenance cost as a power func-

tion of AGB (Mori et al., 2010). In total, we modelled TMC as

TMC AGB AGB, , /T T ch k TT bΔ Δ( ) = +( )10 1 (2)

where c, h, k and b are fitted parameters.

From these equations, we were able then to predict AGBmax,

the maximum AGB that can be supported for a given climate

and latitude. To do this, it is useful to first define what we call

maintenance cost per unit biomass (MCB) as
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where q, T and DT are vectors encompassing intra-annual varia-

tion in sun elevation and temperature. Thus, AGBmax peaks

where the ratio of annual GPP to annual MCB peaks. Note that

the location of this peak is independent of the fitted parameters

g and c, and depends only on the other six parameters.

Parameterization

We parameterized the models for GPP and TMC of humid,

lowland old-growth forest from global datasets. We used average

monthly temperature and average monthly diurnal temperature

variation interpolated to the closest 10′ latitude–longitude inter-

section based on data from meteorological stations, recorded

mostly between 1961 and 1990 (New et al., 2002). We used mea-

surements of forest carbon budgets (Luyssaert et al., 2007) to fit

GPP and TMC.

Sites were included in the parameterization of the GPP and

TMC models, and in the evaluation of the predicted AGBmax,

only if they met specific criteria determined a priori. Due to the

direct influence of water stress on GPP (Pallardy, 2008) and

indirect impacts via fire regimes and life-history strategies,

effects that are beyond the scope of the current model, we

excluded sites in which annual potential evapotranspiration

(Thornthwaite, 1948) exceeds precipitation (New et al., 2002)

(Note, however, that the estimates of annual potential evapo-

transpiration that we used are potentially subject to bias; see

Fisher et al., 2011.) We excluded sites at altitudes above 1000 m

(altitude from New et al., 2002) due to the direct impact of air

pressure on photosynthesis (Gale, 1972) and potentially depau-

perate tree species communities. For the same reasons of isola-

tion and potentially depauperate communities, we excluded

sites on islands that had never been connected to continents. In

addition, we had to exclude two sites on a small island (Hawaii)

for which climate data (New et al., 2002) were unavailable (this

influences only the part of the sensitivity analysis in which

oceanic islands are included) and we had to move one coastal

site (Spain) to the closest 10′ latitude–longitude intersection on

land as interpolated climate data were available only over land

(New et al., 2002).

We assigned an uncertainty class to each measurement based

on both the verbal description of the stand structure and history

and the field methodology reported in the database

(‘GPP_method’). For the parameterization of the GPP model

(equation 1), we aimed to use only closed-canopy sites, and

therefore excluded sites with time since a major disturbance of
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less than 6 years (3 years in the tropics) and all fruit plantations.

Each of the remaining sites was assigned an uncertainty class

between 1 and 3. All sites began with uncertainty classes of 1; an

additional point was added for sites whose uncertainty scores in

Luyssaert’s database (Luyssaert et al., 2007) were above 0.5, and

a point was added if there was mention of a major disturbance

such as thinning but lack of information on its timing. We

excluded sites with uncertainty class 3, leaving 95 sites for the

GPP fits. In most cases, these GPP data were based on

eddy-covariance measurements.

For the parameterization of the TMC model (equation 2), we

used old-growth forest sites for which both GPP and AGB data

were available. We used GPP data to parameterize the TMC

model under the assumption that annual TMC should equal

annual GPP in old-growth forests, and because GPP data were

available for more sites and are considered more accurate. We

excluded all sites with a ‘management code’ other than ‘UM’

(unmanaged) and time since a major disturbance of less than 60

years (30 years in the tropics). These threshold ages reflect a

compromise necessitated by the dearth of data for very old

forests, and the need for an adequate sample size for reasonable

model parameterization. We recognize that biomass accumula-

tion clearly continues beyond 60 years (or 30 years in the

tropics), though at a fairly slow rate, and that the inclusion of

older successional forests in this analysis is likely to cause a small

bias towards overestimating TMC for a given biomass, and thus

underestimating expected AGBmax; unfortunately, currently

available data do not permit a better alternative approach. As

before, each site was assigned an uncertainty class, starting with

a default value of 1. A reported uncertainty score above 0.5

(Luyssaert et al., 2007) and time since a major disturbance of

60–120 years (30–60 years in the tropics) both increased our

uncertainty class by one point. We excluded sites with uncer-

tainty class of 3 (none) and thus used data from 17 sites.

Several stands had data from multiple years or from several

GPP measurement methods in the same year. For both TMC

and GPP we used only one data point per site, averaging over the

data rows for the lowest available uncertainty class. Both models

were fitted by ordinary least squares on log-transformed annual

values [equivalent to minimizing the root mean squared error

(RMSE) in log-transformed values]. Searches for the best

parameter values were done using a quasi-Newtonian method of

hill-climbing optimization modified to allow box constraints, as

implemented in the R package (Development-Core-Team,

2008) under the optim function with method = ‘L-BFGS-B’

(Byrd et al., 1995). To calculate annual GPP or TMC for a given

set of monthly temperature means and diurnal ranges, we cal-

culated temperature and sun elevation at 30-min intervals for

mid-month days, and then did a weighted sum over months,

weighting by average days per month.

We restricted parameter values a priori to ranges considered

realistic based on the literature (Pallardy, 2008). We set the range

of Tmin from -5 to 5 (Pallardy, 2008), of Tmax from 40 to 50

(Pallardy, 2008), and of m from 0 to 0.05 (so that GPP remains

positive even with the maximal DT of 18.8 °C in the data).

Because k and m have parallel roles in the effects of acclimation

on GPP and TMC, we set the range of k to be equal to that of m,

thus extending from 0 to 0.05. We allowed a wide range of

possible values for h from 1.5 to 3.0, taking into consideration

that MCB includes not only autotrophic respiration but also

construction of leaves, roots and other plant material to balance

losses (Pallardy, 2008). We set the upper bound of b to be equal

to 0.8, the scaling exponent of autotrophic respiration for trees

including large individuals (Mori et al., 2010). If TMC were

dominated by construction of leaves and fine roots, it would be

likely to scale roughly to AGB and because in old-growth forests

autotrophic respiration is likely to dominate the relation we

placed the lower bound of b half way between zero and the

maximum, i.e. to 0.4. We calculated the sun elevation based on

a sinusoidal annual and diurnal cycle (modified from Forsythe

et al., 1995). We assumed air temperature (T) peaked 4 h after

solar noon. The coefficients c and g were effectively unrestricted;

nominal bounds were set at exp(-100) and exp(100), and fitted

parameters never approached these bounds.

Both equations were fitted to annual data; expected values

were computed by summing over seasonal and diurnal variation

in sun elevation, temperature and temperature differences from

the previous month.

Evaluation

To evaluate the model, we compared the AGBmax calculated from

intra-annual patterns of temperature and sun elevation to

observed AGB at humid, lowland old-growth sites. We calcu-

lated predicted AGBmax for a given set of monthly temperatures

and sun elevations by first calculating expected annual GPP and

MCB based on the fitted models, following equation 4. We

obtained the observed AGB from two datasets (Chave, 2008;

Keith et al., 2009) that together cover all major forest regions of

the world, but that over-represent areas famous for high AGB,

such as the north-western United States and south-western

Australia.

We applied the same data filtering criteria in the evaluation as

in the parameterization: we excluded sites that were at high

elevation (> 1000 m), were arid (potential evapotranspiration >
precipitation) or were oceanic islands. In addition there were six

sites (five in Venezuela and one in Costa Rica) for which both

temperatures and precipitation (and in some cases altitude)

reported for the location in Keith et al. (2009) differed drasti-

cally from those interpolated in New et al. (2002), calling into

question the accuracy of the location data and/or the relevance

of the interpolated climate data. One site had to be excluded as

it was on a small island (American Samoa) for which climate

data (New et al., 2002) were not available (because it was on an

oceanic island, this exclusion influences only the sensitivity

analysis). We moved one coastal site to the closest 10′ latitude–

longitude intersection on land as interpolated climate data were

available only over land (New et al., 2002). This left us with 109

old-growth sites for the evaluation.

We evaluated the sensitivity of the results by varying four

fixed model parameters, ten values at which parameters were

bounded, and five data selection criteria, varying one factor at a
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time. The four fixed parameters were the exponent on sin q in

equation 1, the exponent on (T – Tmin) in equation 1, the expo-

nent on (Tmax – T) in equation 1 and the lag between solar noon

and peak temperature. The 10 bounds were the lower and upper

bounds for Tmin, Tmax, h and b, and the upper bounds for the

acclimation parameters m and k. The lower bound of both accli-

mation parameters was zero, and this was not varied (negative

values would be nonsensical). The five data selection criteria

were the maximum altitude for inclusion, the island exclusion

criterion, the potential evapotranspiration versus precipitation

criterion, the data uncertainty criterion for TMC and the data

uncertainty criterion for GPP.

We developed all the models, and planned the parameteriza-

tion and sensitivity analysis fully before computations, and did

not change data selection criteria or model characteristics based

on results (i.e. no ‘tuning’). Appendix S1 in the Supporting

Information contains all the data, which as noted previously are

drawn from the original publications (New et al., 2002; Luys-

saert et al., 2007; Chave, 2008; Keith et al., 2009).

RESULTS

The best-fit functions explained 57% of the variation in GPP

among 95 humid, lowland sites (Fig. 1a), and 79% of the varia-

tion in TMC among 17 sites (Fig. 1b). Best-fit parameter values

were: g = 3.6 ¥·10-5; Tmin = -5°C; Tmax = 40°C; m = 0.05; c = 4.8

¥ 10-3; h = 1.7; k = 0.05; b = 0.4.

Under the fitted models, GPP peaks at 25 °C, with a steep

decline at higher temperatures, while MCB and TMC increase

continuously and exponentially (Fig. 2a). These relationships in

combination lead to the prediction that the ratio of GPP to

MCB, and therefore AGBmax, peaks at a mean annual tempera-

ture of 16.5 °C in the absence of seasonal or diurnal temperature

variation (New et al., 2002) (Fig. 2b). Though the curve for pre-

dicted AGBmax versus temperature is relatively symmetric, the

deficit of GPP relative to TMC is greater for higher temperatures

(Fig. 2a). Therefore, a heat wave of 32.5 °C is several times more

energetically costly to an old-growth forest than a cold snap of

0.5 °C. Under conditions where TMC is small relative to GPP,

such as in young stands, we would expect maximal rates of

biomass accumulation to occur at temperatures close to the

peak of GPP, 25 °C.

Seasonal temperature variation generally reduces predicted

AGBmax (Fig. 3). The decline in AGBmax with increasing season-

ality is especially strong for average annual temperatures

between 10 and 20 °C. In contrast, at the lowest average annual

temperatures, below about 5 °C, increased seasonality leads to

increases in AGBmax. The effects of changes in average annual

temperature also differ depending on seasonality. A decrease in

average annual temperature at temperatures below 16.5 °C

lowers AGBmax much more when there is low seasonality than

when there is high seasonality, consistent with observed trends

in Eurasia and North America (as reflected in forest height

Lefsky, 2010).
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Figure 1 Expected gross primary productivity (GPP) under the best-fit model plotted against measured GPP (a), and expected total
maintenance cost (TMC) under the best-fit model plotted against measured TMC (b), relative to the 1:1 line (solid). The outlying data
point marked S (panel a) represents a 3-year-old Pseudotsuga menziesii stand (Humphreys et al., 2006) which was wrongly included in the
parameterization because the recent clear-cut was not reflected in the ‘management’ field (Luyssaert et al., 2007). We did not exclude it
post hoc as the contradictory information was revealed only by additional checks performed for outlying data points. Point T (panel a)
represents a Quercus stand in Portugal, included in our parameterization as the annual precipitation was estimated to be on average
688 mm (New et al., 2002) and therefore exceeds potential evapotranspiration of 589 mm. However, in 2004, the year for which GPP
data are available, the measured precipitation was only 488 mm (Luyssaert et al., 2007). Point U (panel b) represents a 60-year-old
nitrogen-fixing Alnus glutinosa stand in northern Germany; note that 60 years is the minimum age for inclusion as an old-growth forest in
this analysis (Kutsch et al., 2001).
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Our model explained fully 50% of the variation in the old-

growth AGB among 109 humid, lowland old-growth forests –

none of which were included in the parameterization of the GPP

and TMC models (Fig. 4). The RMSE for log-transformed AGB

was 0.70, corresponding to approximately a two-fold deviation

in untransformed AGB. The sensitivity analysis revealed that the

proportion of the variance explained and the RMSE are robust

to the specific parameter bounds and site selection criteria

employed (see Appendix S2). Given our method of parameter-

ization, r2 and RMSE values are the appropriate measure of the

success of our model. (In contrast, similarity in average values

between predictions and observations is to be expected simply

because the TMC function is parameterized based on measured

AGB.)

DISCUSSION

Our models explained more than 50% of variation in GPP and

TMC among the datasets to which they were fitted, and fully

50% of variation in old-growth biomass in an independent

dataset. This strongly suggests that our approach successfully

captured key influences of climate on energetic balances, and

consequently old-growth biomass, in humid, lowland forests.

Our model’s underestimation of AGB for the highest AGB sites

(Fig. 4) could in part be caused by biases towards higher AGB in

the evaluation datasets, in particular oversampling of sites with

higher AGB than average for their region (‘majestic forest bias’;

Phillips et al., 2004) or oversampling in regions with higher AGB

than average for their climates (e.g. more samples in the western

coast of North America than of Europe). Another potential

cause of underestimation is inclusion of younger forests in the

datasets used for parameterizing the TMC model than in

datasets used for evaluating predictions of old-growth forest

biomass.

There have been few studies of AGB variation that span more

than one continent. Stegen et al. (2011) analyzed 276 Gentry

plots from the Americas and concluded that ‘Climate generally

explained little variation in forest biomass’. It is important to

note that the small plot size in these studies increases sampling

error, especially for high-biomass sites. Luyssaert et al. (2007)

found weak patterns in a meta-analysis of over 100 plots;

however, these sites included managed forests obviously increas-

ing variation not explained by climate. Luyssaert et al. (2007)

concluded that AGB does ‘not follow a clear trend but overall

higher biomass accumulation is observed in forests from the

poles to the equator with the highest accumulation in

temperate-humid evergreen forests. Within a climatic zone,

forests in the humid biomes accumulate in general more
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biomass compared with forests in semiarid biomes’. Keith et al.

(2009) evaluated another large dataset compiled from literature,

and reported that ‘temperate moist forests occurring where tem-

peratures were cool and precipitation was moderately high had

the highest biomass carbon stocks’ but offered no explanation

for why some temperate moist forests have low AGB. None of

these studies evaluated relationships with seasonal temperature

variation. It is possible that phenomenological models such as

these could explain more geographic variation in AGB if they

were restricted to old-growth forests and included seasonal tem-

perature variation as a predictor. However, any such phenom-

enological models would still be of dubious utility for predicting

forest biomass under novel future climates. In contrast, our

more mechanistic model explained a large proportion (50%) of

the global AGB variation among 109 humid lowland old-growth

forest sites. And because it is mechanistic, our model provides

more insight into underlying processes and a better basis for

predicting forest biomass under novel future climates.

Our models lead to specific predictions for the impacts of

global temperature change on forests. GPP is predicted to

increase with increasing temperatures except in the lowland

tropics (Fig. 2a), while MCB is predicted to increase with tem-

perature everywhere. In combination, this leads AGBmax to

decrease with increasing temperature for a wide range of tem-

perature regimes (Fig. 3). In the current climate of tropical

lowland rain forests, an increase of approximately 4 °C is

expected to halve AGBmax in the long term (Fig. 3). A similar

drastic change, but towards increasing AGBmax with increasing

temperature, is expected in cold and very maritime climates

having little seasonal temperature variation (Fig. 3).

Clearly, there is more to explaining global variation in old-

growth forest AGB than temperature and sun elevation alone, as

is evident from the fact that neighbouring stands experiencing

the same climate often have significantly different AGB. There

are dozens of additional factors that influence GPP and/or

MCB, and thus that would be expected to influence AGBmax, and

could potentially be included in more complex models. The

availability of water, soil nutrients and solar radiation to trees

(influenced by clouds and other plants such as lianas) will

clearly influence GPP of trees and thus AGBmax and the number

of trees per unit area influences MCB (Larjavaara, 2010). The

life-history strategies of local woody plant species will also play

a role, and are likely to interact with soils and climate as different

strategies are favoured under different circumstances; these

influences could potentially be captured in models that compete

multiple functional types (Moorcroft et al., 2001).

In the model presented here, we subsumed all components of

maintenance – autotrophic respiration, leaf turnover, branch

turnover, and tree turnover (mortality and recruitment) – into a

single function, TMC, with a single dependence on temperature

and biomass. This approach worked surprisingly well, as the fit

of the resulting model was excellent with the exception of one

unusual plot (Fig. 1b). Clearly, one obvious area for further

model development is the separation of maintenance into com-

ponents that can have distinct relationships to temperature and

biomass, and parameterization of such models based on data for

these components. Better models of TMC (and/or better models

of GPP) would be expected to improve predictions of AGBmax,

although it is important to note that more complex models are

not necessarily better due to the increased danger of over-fitting

(Burnham & Anderson, 1998).

A major challenge to ecology today is to predict the impact of

global environmental change on old growth forest carbon stores

and fluxes (Wright, 2005). Observations of current changes in

AGB provide some insight (Phillips et al., 1998; Myneni et al.,

2001; Chave, 2008; Lewis et al., 2009), but do not enable us to

forecast the final pool size for a given change in temperature.

Complex dynamic global vegetation models (DGVMs) are in

principle capable of estimating the final pool sizes, but global

AGB variation is rarely reported (see Foley et al., 1996, for an

exception) possibly because it is difficult to model and regional

testing has yielded unsatisfactory results (Delbart et al., 2010).

When DGVMs are applied to forecast the future, different

models produce widely differing predictions, a pattern sugges-

tive of overfitting that severely limits their utility for predictions

under novel climates (Purves & Pacala, 2008). It seems unlikely

that they could correctly predict future global patterns in AGB.

Here, we presented a novel approach to understanding global

AGB variation in humid lowland old-growth forests, an

approach grounded in the dual influences of temperature on

GPP and MCB. Our model explained half of current global AGB

variation among humid lowland forests, and leads to concrete,

testable predictions regarding the impacts of global temperature

change. Future work that unites the best elements of these

diverse approaches should contribute to a better understanding

of climate impacts on forests today and in the future.
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