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[1] What is the most appropriate sampling scheme to estimate event-based average
throughfall? A satisfactory answer to this seemingly simple question has yet to be found,
a failure which we attribute to previous efforts’ dependence on empirical studies. Here
we try to answer this question by simulating stochastic throughfall fields based on
parameters for statistical models of large monitoring data sets. We subsequently sampled
these fields with different sampling designs and variable sample supports. We evaluated
the performance of a particular sampling scheme with respect to the uncertainty of
possible estimated means of throughfall volumes. Even for a relative error limit of 20%,
an impractically large number of small, funnel-type collectors would be required to
estimate mean throughfall, particularly for small events. While stratification of the target
area is not superior to simple random sampling, cluster random sampling involves the risk
of being less efficient. A larger sample support, e.g., the use of trough-type collectors,
considerably reduces the necessary sample sizes and eliminates the sensitivity of the mean
to outliers. Since the gain in time associated with the manual handling of troughs versus
funnels depends on the local precipitation regime, the employment of automatically
recording clusters of long troughs emerges as the most promising sampling scheme. Even

so, a relative error of less than 5% appears out of reach for throughfall under
heterogeneous canopies. We therefore suspect a considerable uncertainty of input
parameters for interception models derived from measured throughfall, in particular,

for those requiring data of small throughfall events.

Citation: Zimmermann, B., A. Zimmermann, R. M. Lark, and H. Elsenbeer (2010), Sampling procedures for throughfall monitoring:
A simulation study, Water Resour. Res., 46, W01503, doi:10.1029/2009WR007776.

1. Introduction

[2] The redistribution of rainfall in forest canopies results
in throughfall patterns which show substantial spatial var-
iability [Levia and Frost, 2006], though large differences
exist among forest ecosystems [Lloyd and Marques, 1988;
Holwerda et al., 2006]. The search for sampling schemes
that provide reliable estimates of mean throughfall, given
this variability, has attracted some interest in recent decades
[Helvey and Patric, 1965; Kimmins, 1973; Lloyd and
Marques, 1988; Kostelnik et al., 1989; Puckett, 1991;
Thimonier, 1998; Rodrigo and Avila, 2001, Holwerda et
al., 2006]. In this context, particular attention was given to
sample support and, to a lesser extent, sampling design.
Following de Gruijter et al. [2006], we define the sample
support as the shape, size and orientation of the sampling
units. A sampling design assigns a probability of selection
to a set or sequence of sampling units in the sampling
universe. The combination of a sampling design and an
estimator for a target parameter, such as mean throughfall
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of an area, is called a sampling strategy [de Gruijter et al.,
2006]. As suggested by the same authors, we refer to the
entire plan, which combines all the decisions and infor-
mation pertinent to the acquisition, recording and process-
ing of data, as the sampling scheme.

[3] Robust sampling schemes have been identified for
some problems, e.g., the estimation of interception loss over
extended periods from temporally accumulated samples.
For instance, the random relocation of small, funnel-type
collectors during the sampling period, subject to some
assumptions, improves the efficiency of sampling estimates
by increasing the spatial coverage [Lloyd and Marques,
1988; Holwerda et al., 2006]. However, for the common
problem of estimating throughfall for particular events,
there is no consensus on the best strategy, but there is
recognition that estimates of this variable are subject to
considerable sampling error, and that these errors will
propagate when the estimates are used in subsequent
modeling. For this reason Hutjes et al. [1990] called for
improved accuracy and precision of the estimates of
throughfall.

[4] Various practical questions about how best to sample
throughfall for individual events remain unresolved. Re-
garding the sample support, several empirical studies
addressed the potential benefits of trough- versus funnel-
type collectors [e.g., Kostelnik et al., 1989], but no general
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Figure 1.

Location of the research area (a) in Panama and (b) on Barro Colorado Island. In Figure 1b

the dark gray area indicates the position of Lutz Creek catchment, the lines refer to the trail system, and
the red square indicates the location of the sampling area. (c) The close-up view of the 1 ha sampling area
shows the location of sampling points (dots). Different colors of dots indicate collector placement
according to different sampling strategies, that is, black dots refer to locations that were chosen according
to a design-based sampling strategy, whereas red dots mark locations selected by a model-based strategy.
(d) The photo shows one of the funnel-type samplers.

recommendations as to the best type of intercepting device
have emerged so far [Thimonier, 1998]. Although we might,
a priori, anticipate advantages for a trough collector that
integrates short-range variation in throughfall, which con-
tributes to the spatial variation of funnel-based measure-
ments. Furthermore, most studies used a simple random
sampling design [Bruijnzeel and Wiersum, 1987; Lloyd and
Marques, 1988; Puckett, 1991; Gash et al., 1995; Lin et al.,
1997; Schellekens et al., 1999; Carlyle-Moses et al., 2004;
Keim et al., 2005; Holwerda et al., 2006; A. Zimmermann et
al., 2007, 2008], and the potential benefits and drawbacks
of alternative designs such as stratified random sampling or
cluster sampling have not been assessed.

[5] The comparative assessment of different sample sup-
ports or sampling designs, or both, is potentially costly and
labor intensive. This is because the comparison of particular
supports under particular designs requires a set of field
observations which allows us to estimate standard errors of
sample means under the alternative scheme. Previous stud-
ies of which we are aware have therefore been limited in the
generality of conclusions they can support. Here we propose
an alternative approach. We still use empirical observations,
but we use these to derive a spatial statistical model of
throughfall which can then be used to simulate observations
with different support sizes, and under different sampling
designs. This approach was already used in a study on soil
monitoring [Papritz and Webster, 1995], but we are not
aware of its application to the current problem.

[6] In this paper, we first describe the spatial statistical
model that we use, and we explain how it is fitted to a set of
throughfall data during several separate events in a study
plot. We then address the following research questions by
using the original data sets (question 1) and the fitted
models (questions 2 and 3): (1) How many small, funnel-
type collectors are required to estimate event-based mean
throughfall at prescribed error limits at our tropical rain
forest site? (2) How much can be gained by increasing the
sample support, i.e., by using trough-type collectors;
which factors influence the potential benefits? (3) Are
there gains or losses associated with the use of stratified or
a cluster random sampling, respectively, versus simple
random sampling? Finally, we interpret our results regard-
ing their implications for interception modeling.

2. Methods
2.1.

[7] We investigated throughfall patterns in a square 1 ha
plot located in the Lutz Creek Catchment (9° 9'N, 79°
51'W) on Barro Colorado Island, Panama (Figure 1). The
island was isolated from the mainland during the creation of
Lake Gatun, which is part of the Panama Canal. Its climate
is characterized by distinct wet and dry seasons. The wet
season lasts approximately from May to mid-December.
Total annual rainfall averages 2651 + 441 mm (mean + 1sd,
n = 83, data from 1925 to 2007, Smithsonian Tropical

Site Description
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Research Institute, Environmental Science Program). The
vegetation is classified as tropical semideciduous moist
forest [Foster and Brokaw, 1982]. Ten percent of the canopy
tree species are dry season deciduous [Croat, 1978]. The
forest in the study area is secondary growth of more than
100 years of age with an unevenly distributed understory.
Stand height is 25—35 m with few emergents approaching
45 m. For a detailed description of the stand characteristics
we refer to 4. Zimmermann et al. [2009].

2.2. Sampling and Instrumentation

[8] Our throughfall sampling scheme comprises a design-
based and a model-based sampling component. Regarding
the former component, the sampling units are selected by
probability sampling and inference is based on the sam-
pling design; for the latter part, statistical inference is
based on the model. The design-based component consists
of a stratified simple random sampling with compact
geographical stratification [de Gruijter et al., 2006]. We
divided our 1 ha plot into 100 square subplots of length
10 m. In each of these subplots we randomly selected two
throughfall sampling points (Figure 1). We then chose
20 of these sampling points at random, and selected an
additional sampling point 1 m away in a random direction
(model-based sampling component). These additional
20 points increased the number of sampling locations
separated by short lag distances, which is important for
estimating the shape of the variogram model near the
origin [B. Zimmermann et al., 2008].

[9] Throughfall samples were collected on an event basis
during two campaigns. The first lasted from August to
November 2007 (n = 42 events). The second covered the
dry and the subsequent transition season in 2008 and lasted
from February to June (n = 14 events). To qualify for an
event, at least 0.6 mm of rainfall had to be recorded, which
had to be preceded and followed by at least 2 hours without
rainfall. Our observations indicate that throughfall com-
pletely ceased within these 2 hours, and we usually started
sampling 2.5 h after the end of rainfall. Since throughfall
sampling took at least 3 h, all events of our data set are
separated by more than 5 h. Rainfall was continuously
recorded with two tipping bucket rain gauges in a clearing
300 m from the throughfall sampling site. This distance
between rainfall and throughfall measuring sites might be
problematic for the calculation of interception loss due to
the small-scale variability of convective rainfall. Neverthe-
less, this problem is irrelevant in the context of the present
study.

[10] The throughfall collectors (n = 220) consisted of a
2 L polyethylene sampling bottle and a funnel (Figure 1).
The receiving area of each collector was 113 cm?; so the
total sampling area in the 1 ha plot was 2.49 m”. A poly-
ethylene net with a 0.5 mm mesh at the bottom of the funnel
minimized measurement errors due to organic material and
insects.

2.3. Sample Size Requirements for Funnel-Type
Collectors

[11] In order to compare sample size requirements for our
sample support size with published values from the litera-
ture, we computed the required sample sizes using all
original throughfall events (n = 56) with the widely used
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formula for a confidence interval at level 1 — a = 0.95
(standard formula from here on) such that the relative
error (defined below) is smaller than a prespecified limit »

- <—”1‘“/2 LS(Z)>2 (1)

where u; _ . is the (1. — «/2) quantile of the standard
normal distribution, and % is the estimated coefficient of
variation. The relative error is defined as

¢-2)

z

; (2)

where Z is the estimated sample mean and Z is the true
mean, i.e., the population mean of a deterministic variable
in a system, which is not available in practice. The relative
error has been used frequently in throughfall studies along
with the standard requirement that it should not exceed
5% or 10% [Kimmins, 1973; Rodrigo and Avila, 2001;
Holwerda et al., 2006]. Due to sampling error no strategy
can guarantee this, but we can require that, for example,
the estimated mean achieves this standard with a given
probability.

2.4. Model of Spatial Data and Its Estimation

2.4.1. Model

[12] Our objective is to analyze the data described in
section 2.2 so as to generate a model which is appropriate
for generating observations from different sampling designs
and support sizes. Such a model must account for the spatial
dependence among such measurements (nearby measure-
ments are more likely to be similar than measurements
further apart), and for the fact that throughfall data may
include extreme (upper tail) values from a few isolated spots
where throughfall is concentrated. These outliers occur due
to sampling locations beneath drip points of leaves or
inclined stems [4. Zimmermann et al., 2009]. For the
purpose of this study, we propose that n measurements of
throughfall correspond to a random variate Z which has the
distribution:

Z ~ N{p,T'} with probability 1 — p,
~ D with probability p, (3)

where N{p, I'} denotes a normal random variate with a
stationary mean value in the vector p and a covariance
matrix I" which we assume can be described parametrically
by some bounded variogram model ~y(h), such that the
element of I'" that corresponds to observations at any two
sites x; and x; (i7]) is given by y(co)—y(x; — X;). The
distribution D denotes some random contaminating process.
The probability of a contaminating event at any site is p.,
and we assume that the occurrence of a contamination at
any two locations is an independent process (an assumption
we test in practice). This separation of the throughfall fre-
quency distribution into a “normal” and a ““contaminating”
process is arbitrary and requires a statistical criterion
(equation (7)). It is, however, unavoidable because not
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Figure 2. Summary of all steps involved in modeling the spatial throughfall data so as to simulate
realistic random fields of throughfall magnitude, which were subsequently sampled with different sample
supports and selected sampling designs. The encircled numbers correspond to the sections of this paper in
which the particular steps are described in detail. Dashed arrows and dashed boxes highlight decisions or
operations, which never applied to or which were not necessary for the modeling of the presented data
(e.g., all selected data sets contained spatial outliers).

only the Gaussian assumption has to be satisfied before
variogram modeling and geostatistical simulations, but
also the final model needs to incorporate outlying values
which cannot be forced to the center of the distribution
even after transformation [4. Zimmermann et al., 2009].
In principal we should like to model spatiotemporal var-
iation of throughfall for our purposes. However, the spatial
statistics of our throughfall measurements for different
events were markedly different (Table 2); indicating that
joint space-time modeling assuming coregionalization
[Papritz and Webster, 1995] or some other simple space-
time covariance structure [e.g., Jost et al., 2005] would not
be feasible. Moreover, drip points are not active during all
events [A. Zimmermann et al., 2009]. For this reason we
modeled the different events and simulated sampling from
them independently.
2.4.2. Fitting the Model

[13] We obtained parameters for our model from through-
fall measurements for 14 events which were selected from
the overall data set of 56 events. The selected events cover
the sampled range of mean throughfall volumes (0.6—
79.4 mm). Another selection criterion required that the
throughfall measurements of a particular event display,
after the removal of outliers, a bivariate normal distribu-
tion. This is important because the estimation of the

covariance parameters with residual maximum likelihood,
the robust variogram estimators and Gaussian simulations
assume a multivariate Gaussian distribution, which cannot
be verified [Pardo-Iguzquiza, 1998]. Chilés and Delfiner
[1999] therefore suggested, in the framework of Gaussian
simulation, that at least the bivariate distributions of the
(transformed) data could be checked (see section 2.4.3). In
sections 2.4.3 to 2.5 we describe the procedure to obtain
simulated throughfall fields which are the cornerstone for
our simulation study. The individual steps of this procedure
are summarized in Figure 2.
2.4.3. Exploratory Data Analysis

[14] To ensure that our estimates are efficient [Webster
and Oliver, 2007] and to justify the assumption of an
underlying multivariate normal process, we must transform
our data, where necessary, so that the histogram appears
consistent with a normal distribution. In addition to inspect-
ing the histogram, the skewness of the data is a useful
indicator of the plausibility of the assumption of normality
[Webster and Oliver, 2007]. However, we want to transform
our data only if this is necessary to justify the assumption that
the underlying spatially correlated process is normal, and the
standard coefficient of skewness is susceptible to the effects
of outliers. We therefore computed a robust alternative, the
octile skew [Brys et al., 2003], skewg. This is a measure of the
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asymmetry of the first (O;) and seventh octile (O;) of the data
about the median

(O7 — median) — (median — Oy)
(07 - 0n) 7

skewg =

(4)

and hence, is insensitive to extreme values. We use the octile
skew as a diagnostic, because a variable with the distribution
given by (3) is likely to be skewed if the means of the
underlying normal and contaminating processes are different.
Rawlins et al. [2005] recommended as a rule of thumb that
data need to be transformed if the octile skew is larger than
0.2 or smaller than —0.2. We adopted this approach and used
Box-Cox transformations [Box and Cox, 1964] to find the
most appropriate transformation to achieve Gaussian beha-
vior if the octile skew was outside this recommended interval.

[15] In the context of techniques that require a nonverifi-
able multivariate Gaussian distribution, it was recommended
[Chiles and Delfiner, 1999; B. Zimmermann et al., 2008] to
check at least the bivariate data distribution, both to detect
deviations from the Gaussian shape and to reveal spatial
outliers. The latter cannot be ruled out simply by the
inspection of univariate data distributions because spatial
outliers might be unusual only compared to their close
neighbors, but not in a histogram of the whole data set
[Lark, 2002]. As a simple visualization of the bivariate
distribution we used scatterplots, h scattergrams [ Webster
and Oliver, 2007], of point pairs separated by a fixed
distance, which should be produced for a number of
distance classes. In a previous paper [4. Zimmermann et
al., 2009] we showed that the occurrence of outliers in
some, but not all, of those classes results in overestimation
of the semivariance by nonrobust estimators.
2.4.4. Variogram Estimation

[16] First we calculated experimental variograms using
the estimator due to Matheron [1962]

N(h)
2(0) = 7 2 0 2w+ WP (9
i=1

where z(x;) is the observed value at location x;, and N(h)
are the pairs of observations that are separated by lag h.
We fitted four theoretical models (exponential, Gaussian,
spherical, pure nugget) to the experimental variogram, and
chose the one with the smallest sum of squared residuals from
the fit. We assessed the fitted model by cross-validation, in
which each observation, z(x), is left out in turn and predicted
by ordinary kriging from the rest to yield a prediction, Z(x)
with a kriging variance af(,x. In order to assess whether
the data contain outliers that cause an overestimation of the
semivariance by this nonrobust estimator, we calculated the
statistic 6(x) [Lark, 2000]

{z0 ~2)}" ”

UK,x

0(x) =

[17] If kriging errors follow a Gaussian distribution, 6(x)
will be distributed as x> with one degree of freedom.
Because the kriging variance, which is the denominator of
equation (6), estimates the squared kriging error, the mean
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of O(x) should be 1 if the kriging estimates and their
variances have been determined with an appropriate
variogram and if the assumption of intrinsic stationarity is
plausible. However, the mean of 6(x) is itself subject to the
effects of outlying observations, and so the median is used
as a robust diagnostic [Lark, 2000]. Since the median of the
standard x? distribution with one degree of freedom is
0.455, this is the expected value of the median of 6(x). A
sample median significantly less than 0.455 suggests that
kriging overestimates the variance, whereas one which is
greater than 0.455 underestimates the variance. In order to
compute confidence limits for the median of 6(x), account-
ing for the spatial dependence among the kriging errors, we
performed 1000 unconditional simulations to predict the
values of throughfall magnitude, computed the median of
0(x), and determined the 2.5% and 97.5% percentiles of the
distribution of the median of 6(x) to approximate 95%
confidence limits. If the median of 6(x) was outside those
limits for the variograms based on the Matheron estimator,
we calculated robust experimental variograms proposed by
Cressie and Hawkins [1980], Dowd [1984], and Genfon
[1998], and chose among them following Lark [2000].

[18] We then used the standardized error £4(x) of cross-
validation with the selected variogram [Bdrdossy and
Kundzewicz, 1990] for the identification of outliers at a
particular location x,,, which is defined as follows:

es(x) = Z(%,) — z(Xo) . (7)

OK.0

[19] Ifa property at a particular location X, is a realization
of a quasi point process (i.e., the contaminating process of
our model) rather than the background process (i.e., the
Gaussian random process of our model) then the variance of
the deviation {Z(x,) — z(X,)} is likely to be underestimated
by the kriging variance ok, which increases the value of
es(X). Bardossy and Kundzewicz [1990] proposed the stan-
dardized error to be used to classify a value as an outlier if
es(x) is smaller than —1.96 for a 95% confidence level; in
the present study, we set the confidence level to 99%. The
standardized error of cross-validation for the identification
of spatial outliers was also used by Meklit et al. [2008].
Once identified, we removed the outlying values and sub-
sequently estimated the covariance parameters of the uncon-
taminated data sets by residual maximum likelihood, which
is preferred to methods of moments estimation of the
variogram as the fitted model is independent of arbitrary
decisions we may make about, for example, lag bins [Lark
et al., 2006; B. Zimmermann et al., 2008].

2.4.5. Modeling the Outliers

[20] The procedures described so far provide us with a
variogram function for the underlying multivariate Gaussian
random process that we assume to be realized in those of
our throughfall data that do not represent outlying values.
We also require a model for these outliers if we are to simulate
realistic throughfall data sets. The first issue is whether it is
justifiable to assume that the outliers are distributed indepen-
dently and at random among our sampling points, i.c.,
whether they represent a completely spatially random (csr)
process [Cressie, 1993]. We used the mean distance between
an outlying value and its nearest neighboring outlying value
on the sample grid, W, as a diagnostic statistic to test the
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null hypothesis that the outlying data are a realization of a
completely spatially random process. For any given data
set, a fraction (n.) of our observations were identified as
outliers. We then calculated W for this set of outliers, and
used a Monte Carlo analysis to calculate a sample dis-
tribution for W under the null hypothesis that outliers are
csr. In each of 100,000 Monte Carlo runs #, of the original
sample points were allocated to the outlying process inde-
pendently and at random (which corresponds to our null
hypothesis), and we calculated the value of W for each
resulting pattern. The resulting 100,000 values of W pro-
vide us with an empirical sample distribution for this
statistic under the null hypothesis, conditional on our
sampling scheme. The pth and the (1 — p)th percentile of
this distribution yielded critical thresholds to test the null
hypothesis with a P value of 2p. If our observed value of
W was less than the lower threshold, then the null
hypothesis of a csr distribution was rejected, and spatial
clustering of the outliers is indicated. If our observed
value of W was larger than the upper threshold, then the
null hypothesis of csr distribution was also rejected, and
we inferred an overdispersion of the process.

[21] The second issue is to identify a statistical distribu-
tion of the contaminating process, in our case the distribu-
tion of the outlying throughfall data. In order to achieve a
sufficient sample size, we pooled the spatial outliers from
all events, which were standardized by first subtracting their
mean value, then dividing by their standard deviation for
any one event. The histogram of these pooled outliers,
which represents the contaminating process and from which
we wanted to sample possible outlying values, was posi-
tively skewed. Rather than making any assumption about
the distribution of the spatial outliers, we estimated an
empirical probability density function (pdf) by kernel den-
sity estimation [Silverman, 1978, 1986]. Silverman [1986]
demonstrated that the choice of the kernel is not as
important as the choice of an appropriate smoothing
parameter, i.e., the width of the kernel. We selected the
Epanechnikov kernel and used the test graph method of
Silverman [1978] to select the smoothing parameter.

2.5. Simulation of Throughfall Fields

[22] To assess alternative sampling schemes, we generated
fields of throughfall values from the spatial statistical model
introduced in section 2.4 for different recorded events. Our
basic field is a square grid of interval 10 cm, and 1000 rows
and columns (i.e., it corresponds to a 1 ha plot). We assume
that the basic grid cell of area 100 cm” corresponds to
the support of our original measurements, a reasonable
approximation to funnels with an area of 113 ¢cm?®. Real-
izations of the random process Z ~ N{u, I'} were
generated by unconditional simulation of a Gaussian
random variable using the procedure GaussRF, which is
implemented in the package Random Fields in R [Schlather,
2001]. Here the mean vector contained a stationary mean
(the sample average throughfall of the data on the event being
simulated after removal of the outliers), and the covariance
matrix was computed from the residual maximum likelihood
(REML) estimate of the variance parameters for the same
data.

[23] In order to quantify the effects of outliers on the
performance of the sampling strategies to be tested, we
sampled both from the uncontaminated throughfall field
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(described above) and from a simulated field to which we
added outliers. When simulating outliers from a particular
event we set the number of outliers, n., to the number
identified for that event. In all cases our null hypothesis that
the outliers are csr was retained, so these outliers were
substituted at independently and randomly selected nodes of
the grid. The value of throughfall for the outlying obser-
vation was sampled from the smoothed pdf for outliers
using the procedures density and rnorm in R [Becker et al.,
1988]. This standardized outlier value was then rescaled to
an outlying value for the event of interest by multiplying it
by the outlier standard deviation for that event, and by
adding the corresponding outlier average value. For events
where the original throughfall data had been transformed
the simulated values were then back transformed to the
original scale.

[24] The mean of a particular realization of the random
process (both for contaminated and uncontaminated fields)
was computed from all 10° nodes. This is our notional
population mean that we wish to estimate by sampling. A
single value from the simulated grid could be treated as a
value obtained by measurement with a funnel-type collector.
The simulated values for adjacent cells on the grid could
be aggregated to simulate values collected with a device of
corresponding support.

2.6. Sampling From the Simulated Fields

[25] We investigated two aspects of sampling for the
estimation of mean throughfall in a plot of fixed size. First,
we compared the performance of funnel- and trough-type
collectors, that is, we quantified the benefits of an increased
sample support. Second, we tested different sampling
designs for funnel-type collectors (i.e., the same sample
support as our original data).

2.6.1. Procedure to Increase the Sample Support

[26] To obtain simulated values that correspond to
trough-type collectors, the simulated throughfall values
were first back converted from standard rainfall units (mm)
to volumetric, support-dependent data (mL). Next, we
summed up neighboring grid cells to achieve the desired
increase of support. To simulate troughs, we assumed that
their width was 10 cm so that accumulated simulated sample
volumes of neighboring grid cells corresponded to a selected
trough length. We simulated four lengths of troughs, namely
1 m, 2 m, 4 m, and 10 m. The spatial covariance of our
throughfall data showed no directional dependence; hence,
the orientation of the troughs is immaterial. In this case all
our simulated troughs lay on rows of the grid. Prior to
sampling from these aggregated throughfall fields we con-
verted the values to standard rainfall units for comparability
with the results of the whole virtual experiment.

2.6.2. Test for Influence of Different Autocorrelation
Structures on the Benefit of an Increased Sample
Support

[27] Since both the strength of the spatial autocorrelations
(i.e., the nugget-to-sill ratio) and the range over which
throughfall measurements are correlated (i.e., the effective
range) differed among the selected events (for event selec-
tion see section 2.4.2), we expect the benefit of troughs
versus funnels to vary correspondingly. To test this hypoth-
esis, we proceeded as follows. First, we calculated for every
event the range between the 2.5% and 97.5% percentile of
the distribution of the 10000 sample means, which we
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Table 1. Sample Sizes for Sampling From the Simulated
Throughfall Fields

Stratified Simple Cluster Random

Random Sampling® Sampling®

Simple Random Sampling

(Funnels and Troughs) 16° 25°¢ 34 54
15 - - 15 (5) -
30 32 (2) - 30 (10) 30 (6)
50 43 (3) 50(2) 51(17) 50 (10)
75 80 (5) 75 (3) - 75 (15)
100 96 (6) 100 (4) - 100 (20)
150 144 (9) 150 (6) - -
200 192 (12) 200 (8) - -

*Values in parentheses refer to the number of sample points per stratum.
®Values in parentheses refer to the number of sample points per transect.
“Number of strata.

9Number of transects. The clusters are defined as transects.

obtained from sampling the simulated fields with the
different sample supports (funnel-type collectors; trough-
type collectors having lengths of 1 m, 2 m, 4 m, and 10 m)
and a given sample size. To rule out influences of a par-
ticular sample size on the final results, we did these calcu-
lations for a small and the largest tested sample size (n = 30
and n = 200). Next, we computed the ratio of the respective
ranges of trough- and funnel-type collectors, for all tested
trough lengths. When considering, e.g., event 3, which is
one of the selected throughfall events, the use of 30 funnel-
type collectors yields an interpercentile range of 0.85, which
decreases to 0.72 for the employment of 30 1 m troughs.
Hence, in this case the ratio of 1 m troughs to funnels equals
0.85. Clearly, the smaller the ratio the larger is the benefit
of the trough- compared to the funnel-type collectors. We
finally calculated Spearman rank correlation coefficients to
correlate these ratios with the aforementioned characteristics
of the spatial correlation structure, namely the effective
range and the nugget-to-sill ratio.
2.6.3. Comparison of Different Sampling Designs
for Funnel-Type Collectors

[28] The sampling designs, which we compared to simple
random sampling, were chosen to reflect designs used in the
literature, or which are of potential practical importance in
the future. One is a stratified simple random design with
compact geographical stratification; i.e., the plot is divided
into equally sized subplots (strata). This ensures that the
randomly selected sampling locations cover the target area
as fully as possible. It also avoids possible clustering of
sample points, which is often the case with simple random
sampling, and hence can increase precision. In the case of
cluster random sampling, the other sampling design which
we compared to simple random sampling, predefined sets
of sampling locations instead of individual locations are
selected. The resulting spatial clustering of sampling loca-
tions has the operational advantage of reducing the travel
time between locations in the field, but it reduces precision.
Therefore, the rationale for using it is that the operational
advantages allow a larger sample size for the same budget,
which outweighs the initial loss of precision. In this study,
we only tested the performance of cluster versus simple
random sampling using identical sample sizes. An overview
of the tested samples sizes for all designs, and the respec-
tive numbers of strata and clusters are given in Table 1. For
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further details on the designs we considered we refer to de
Gruijter et al. [2006].

2.7. Estimation of Recording Time

[29] The throughfall collected in sampling devices is
commonly measured manually, because of the costs of
equipment to measure it automatically. This means that
the benefits of sampling throughfall on a larger support
must be weighed against the additional time that it takes for
a worker to measure a larger sample. We made measure-
ments of the time to record the expected sample volumes in
a funnel, 1, 2, or 4 m trough in an event of particular
intensity. We did not test 10 m troughs because they would
collect a volume too large for manual handling. We under-
took this experiment assuming that mean throughfall corre-
sponded to the lower quartile, the median, and the upper
quartile of the average throughfall of each of our 56 events.
Fifteen people participated in the experiment, either scien-
tists or their assistants.

3. Results
3.1. Characteristics of the Throughfall Data Sets

[30] In a previous paper [4. Zimmermann et al., 2009] we
showed that the frequency distribution of throughfall
depends on event size. Whereas large events exhibit large
skewness due to stemflow drip points, but a small octile
skew, small events have both a large skewness and a large
octile skew. This indicates that the underlying (uncontami-
nated) distribution of throughfall for small events is skewed,
and this is not just the effect of outliers. For instance, the
smallest of the events which we used for the simulations,
event 43, has an octile skew larger than 0.2, which is
why we transformed the data before variogram analysis
(Table 2).

[31] In addition to this dependence of the shape of the
distribution on the mean, the variance and mean are also
correlated. The coefficient of variation for the events is
largest for event 43, which received the smallest through-
fall volume, whereas the smallest CV characterizes event
34 with the maximum mean throughfall (Table 2); this
relationship is general [A. Zimmermann et al., 2009]. The
percentage of outliers in the original data sets varies
slightly between 0.9 and 4.5% (Table 2).

[32] Regarding the spatial structure of throughfall events,
we were able to discern three patterns. No spatial autocor-
relation was found for events 28 and 34; strong but short-
range (<2 m) correlation characterized events 3, 6, 8, 10,
and 17; and events 12, 19, 25, 32, 33, 42, and 43 revealed a
moderate-to-weak spatial structure but with longer effective
ranges. The performance of the variogram models, which
were estimated by REML for the data sets without spatial
outliers, is indicated by the 0 statistic. For all tested events,
the median of #(x) remains within the confidence limits, and
the mean of 6(x) is very close to its expectation (Table 2).

3.2. Sample Size Requirements for Funnel-Type
Collectors

[33] Here we present the results of equation (1), which
was used to calculate the sample sizes needed to keep the
relative error of the mean below 20%, 10%, or 5%, for the
56 original data sets. In general, due to the larger coefficient
of variation of small throughfall events, the required sample
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Table 2. Summary Statistics and Variogram Parameters for the Simulated Throughfall Events

Original Data

Data Without Extreme Values (o = 0.01 for Removement Procedure)

Variogram Parameters for REML Models

Mean CV* Octile Outliers Mean CV* Partial Range Nugget/ Effective ‘
Event (mm) (%) Skewness Skew (%) (mm) (%) Skewness Model® Nugget Sill® Sill (m) Sill Ranged (m) Omed® Omean’
43 0.6 1039 29 043 23 05% 81.88 1.18 exp® 01" 00" 01" 25" o7" 7.6"  0.357" 0.999"
3 20 925 26 033 23 1.8 7498 118 sph® 00" 03" 03" 19" 00" 19" 0.464" 1.007"
17 55 714 46 014 45 49 453 04 exp 00 49 49 04 00 1.1 0.448  1.000
32 58 686 55 013 09 55 489 04 exp 48 25 73 18 07 55 0.516 0.998
28 7.0 535 14 013 23 66 459 04 nug 92 00 92 00 1.0 0.0 0.530 1.000
10 88 600 26 013 32 82 454 04 sph 00 137 137 1.6 0.0 1.6 0.446 0.998
6 130 700 37 013 41 118 499 04 sph 00 342 342 17 00 1.7 0.509 0.996
42 194 697 67 013 27 181 427 03 exp 325 272 597 39 05 11.6 0.481 0.992
33 198 749 55 009 27 182 491 03 sph 534 259 793 15 0.7 75 0.436 0.993
12 235 532 29 009 27 222 399 02 exp 517 273 790 43 0.7 130 0513 0.993
25 302 682 56 002 27 279 435 02 exp 1257 225 1481 6.1 0.8 18.2 0.399  0.999
8 364 51.1 1.1 003 23 349 459 04 sph 0.0 2562 2562 1.1 0.0 1.1 0.409 0.998
19 434 507 32 006 32 411 381 —0.1 exp 2285 174 2459 38 09 11.5 0.403  1.000
34 794 438 04 000 14 779 418 0.1 nug 1058.1 0.0 1058.1 0.0 1.0 0.0 0.425 1.000

#Coefficient of variation.

Theoretical variogram model; sph, spherical; exp, exponential; nug, pure nugget.

€Sill variance minus the nugget variance.

9For exponential model range x3.

“Median of the 6 statistics for REML models; E{fmed} = 0.455.
"Mean of the 0 statistics for REML models; E{fmean} = 1.000.
SUntransformed data without outliers.

"Data transformed by square roots before variogram analysis.

sizes (equation (1)) increase exponentially with decreasing
event size (Figure 3). That is, smaller events generally need
more samples for the same error limit. The number of
funnel-type collectors, which is needed to keep the relative
error below 20%, varies between 18 and 326; about 100
funnels would suffice for events with a median throughfall
greater than 1 mm (Figure 3). The sample size for small
events (<1 mm) required for relative errors below 10% and
5% can be as high as 1300 and 5200, respectively. If only
throughfall events with a median larger than 1 mm are
considered, the number of required collectors decreases to
about 430 for the 10% and to about 1700 for the 5% error
limit (Figure 3).

3.3. Sampling From the Simulated Fields

3.3.1. Sample Size Requirements for Trough-Type
Collectors

[34] Employment of 1 m troughs and a 20% error limit
involve a necessary sample size of up to 50 for the tested
throughfall events (Figure 4). Most samples are required for
the two small events, event 3 and event 43, and for event 6,
which is of medium size, but has a relatively large contam-
ination with outliers and a relatively strong spatial structure
(Table 2). If 2 m troughs were used, less than 15 of them
would suffice to keep the relative error below 20% except
for the small events (events 3 and 43, see Table 2), which
would require up the 30 troughs (Figure 4). Increasing the
trough length to 4 or 10 m would reduce the number of
collectors further to fewer than 15 in all cases (Figure 4).
Sample size requirements drastically increase with a reduc-
tion of the error limit to 10%. Up to 150, 100, 75, and 30
troughs of lengths of 1, 2, 4, and 10 m, respectively, would
have to be installed (Figure 4); again, the small events
require the most samples. If only larger events (>5 mm) are
of interest, then less than 50 troughs of 1 and 2 m length,

and less than 30 of 4 m length would suffice for an
estimated mean within 10% accuracy. A sample size below
15 suffices for 10 m troughs, except for small events or
events with a pronounced spatial structure (reasons for the
latter are given below); in such cases, up to 30 troughs of
10 m length would have to be employed.

[35] It appears to be impossible to keep the relative error
below 5% even with the employment of troughs as for all
lengths we considered some events would have to be mea-
sured with more than 200 samplers (Figure 4). If only events
having more than 5 mm mean throughfall and if no, weak or
very short spatial autocorrelations are considered, the use of
30 to 50 10 m troughs would suffice for the 5% error limit.

[36] When we correlated the ratio of the interpercentile
ranges of trough- and funnel-type collectors with the effec-
tive range, we found no correlations for all selected events
and both sample sizes (n = 30 and n = 200). We detected,
however, a strong relationship between these ratios and the
nugget-to-sill ratio. Here, correlation coefficients were
—0.9, —0.8, —0.6, and —0.4 for the ratios 1 m troughs to
funnels, 2 m troughs to funnels, 4 m troughs to funnels, and
10 m troughs to funnels, respectively. Hence, the relative
benefit of trough-type collectors depends on the spatial
correlation structure, in our case on the nugget-to-sill ratio;
i.e., strong spatial autocorrelations decrease the relative
benefits of troughs. Not surprisingly, an increase in trough
lengths coincides with a decreasing influence of the spatial
autocorrelations. A simultaneous occurrence of long-range
and strong spatial autocorrelations likely reduces the benefits
of longer troughs, too. As a consequence, prior information
on the spatial structure of throughfall would support the
decision making regarding appropriate collector types.
Troughs will always reduce the sample size for a given error
limit, yet this reduction will be smaller in the presence of
spatial autocorrelations.
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Figure 3. Required sample sizes for funnel-type collec-
tors, which were calculated with equation (1), to keep the
relative error of the sample mean below 20% as a function
of median throughfall magnitude. Note the log scale for
throughfall magnitude. The gray dots represent all 56
sampled throughfall events except the 14 events used for
the simulations (black dots with event numbers). The inset
shows the required sample sizes for relative error limits of
10% and 5%.

3.3.2. Comparison of Sampling Designs

[37] Simple random sampling versus stratified simple
random sampling accounts for only marginal differences
in the precision of the estimated means (Figure 5). In
contrast, cluster random sampling performs worse when
autocorrelation is present; the effective range was partic-
ularly important in this respect. Therefore, this type of
sampling design was most disadvantageous when applied
to events 12, 25, 32, 33, 42, and 43 (Table 2). Event 42,
which exhibits both a relatively long correlation length
and a comparatively strong spatial autocorrelation, shows
the largest difference in precision between cluster random
sampling and simple or stratified simple random sampling
(Figure 5a). For a given sample size, the number of sam-
ple points per transect decreases as the number of transects
increases, e.g., from three to five (Table 1); therefore, the
number of clusters also matters (Figure 5a). In the absence
of or for very short-range spatial autocorrelation, sampling
designs do not differ (Figure 5b). In summary, in the
presence of spatial autocorrelation neighboring observa-
tions contribute less information, which makes a cluster
random sampling less efficient.
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3.3.3. Influence of Outliers on Sample Size

[38] When using funnel-type collectors, the contamina-
tion with outliers drastically increases the sample size
(Figure 6). For example, whereas 15—30 samples would
suffice to keep the relative error below 20% for most but
small events in the absence of outliers, their existence in
real-world data sets inflates the number of required collec-
tors (Figure 6). For the same reason it is impossible to
achieve an error limit of 10% for funnel-type collectors as
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Figure 4. Number of throughfall events out of the 14
events used for the simulations that require <15, >15-30,
>30-50, >50-75, >75-100, >100-150, >150—-200, and
>200 funnel- and trough-type collectors. The limits of the
relative error of the mean are (a) 20%, (b) 10%, and (c) 5%.
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Table 3. Required Time to Record Throughfall Volumes Intercepted by Funnel- and Trough-Type Collectors for the Spectrum of
Throughfall Magnitudes in the Study Area and Error Limits of 20% and 10%?*

Trough-Type Collectors
(Length of 1 m)

Funnel-Type Collectors

Trough-Type Collectors
(Length of 2 m)

Trough-Type Collectors
(Length of 4 m)

RE=20% RE=10% RE=20% RE=10% RE=20% RE=10% RE=20% RE=10%
Maximum sample size® 139 505 36 139 25 94 16 56
First quartile recording time® (min) 40 144 14 55 13 47 15 51
Median recording time® (min) 38 139 27 105 26 99 29 102
Third quartile recording time® (min) 29 107 41 159 45 169 54 188

“Here RE is relative error.

PRequired sample size to estimate mean throughfall for the whole frequency distribution, i.e., including small events.
“Recording time for one collecting device times the maximum sample size. Throughfall event size corresponds to the first quartile, the median, and the

third quartile of the frequency distribution of the sampled throughfall events.

most throughfall events would have to be sampled with
more than 200 samplers. In contrast, troughs are much less
affected by extreme values (Figure 5), and the presence of
outliers hardly increases the required sample sizes for all
error limits. In the majority of cases, the contamination with
outliers does not even produce a switch from one sample
size class to the next higher level (not shown). This insen-
sitivity of troughs derives from the a priori integration of
unusually large or small data points because of their larger
collecting area. Therefore, the extremely high throughfall
amounts under drip points do not result in such a severe
overestimation of mean throughfall as it happens when
funnel-type collectors are employed (Figure 5).
3.3.4. Estimation of Recording Time

[39] In order to give an estimate of actual recording times
in the field, the time required to empty a certain collector
has to be combined with the maximum required sample size
for that collector. Based on the 14 simulation events we
determined the exact sample size needed for a particular
collector and error limit. The results are summarized in
Table 3 and show the following trends. At the achievable
error limits of 10% and 20%, small events involve an
overall recording time for troughs — regardless of their
length — which amounts to about one third of the time
which would be required to service funnel-type collectors
(Table 3). This gain in time for troughs decreases to about
three quarters for medium-sized events, and turns into a
time loss for larger events, in particular for the 4 m trough
(Table 3).

4. Discussion

4.1. Sample Size Requirements for Funnel-Type
Collectors

4.1.1. Sample Size as Affected by Forest Type

[40] The standard formula (equation (1)) to calculate the
sample size, which is needed to keep the relative error of the
mean below a certain percentage, has been applied in a
number of throughfall studies. Large differences exist in the
number of required collectors depending on forest type
[Kimmins, 1973]. For instance, throughfall under mixed
hardwood canopies can be estimated within 10% mean
relative error with as few as 11 fixed collectors at the 95%
confidence level [Puckett, 1991]. Similarly, 9—11 fixed
gauges suffice to keep the relative error below 10% and 22—
23 fixed funnels are needed for a 5% error limit in a holm
oak forest [Rodrigo and Avila, 2001]. In contrast, Holwerda

et al. [2006], working in a lower montane rain forest,
calculated that 100 fixed collectors are necessary to keep
relative error below 10% when the overall coefficient of
variation, i.e., for cumulative throughfall after a number of
sampling occasions, is considered.
4.1.2. Sample Size as Affected by Event Size

[41] Tt is a well-established fact that the coefficient of
variation increases with decreasing throughfall depth
[Kimmins, 1973; Loustau et al., 1992b; Viville et al.,
1993; Bellot et al., 1999; Rodrigo and Avila, 2001;
Holwerda et al., 2006; Staelens et al., 2006]. Accordingly,
several investigators have emphasized that the rainfall
pattern must be considered when selecting the number of
collectors [Rodrigo and Avila, 2001]; e.g., a much larger
number of gauges is necessary to sample precipitation
events <2 mm than >4 mm [Price and Carlyle-Moses,
2003]. Likewise, Helvey and Patric [1965] stated that small
storms are hardest to sample accurately; others pointed out
that the results for the smallest events should be viewed
with caution [Link et al., 2004]. Kimmins [1973] concluded
that the planning of most throughfall studies suffers from an
inadequate knowledge of the spatial and temporal variance
of throughfall and advocated pilot studies. However, the
calculated sample sizes resulting from of such a prestudy
will fluctuate considerably with the length of the monitoring
period or the event sizes for which they are computed
[Thimonier, 1998]. Therefore, it should cover a period long
enough to represent the regional precipitation regime or the
part of it which is of interest for the study.
4.1.3. Sample Size Requirements for an Event-Based
Throughfall Monitoring in the Studied Rain Forest

[42] Considering the present study as a pilot study for an
old secondary forest in the humid tropics, the use of funnel-
type collectors for a continuous, event-based throughfall
monitoring implies either an unrealistically high sample size
or a considerable error in the estimation of the throughfall
mean. Even with the employment of 200 collectors, this
error exceeds 10% for the majority of events (Figure 4).
Hence, with this sample size, the estimated throughfall
mean potentially fluctuates up to 20% around its true value,
and the error might even be higher for very small events.
Since the presence of outliers distorts the distribution
toward its right tail, this fluctuation manifests itself in a
more severe over- than underestimation of the mean
throughfall magnitude (Figure 5).
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4.2. Sampling From the Simulated Fields

4.2.1. Sample Size Requirements for Trough-Type
Collectors

[43] The long-lasting debate in the throughfall literature
on the use of funnel- versus trough-type or other large
collecting devices has not yet come to a conclusion. On the
one hand, some authors stated that the sampling strategy
and the number of gauges, rather than type, is more
important in gaining the true measure of throughfall input
in forested ecosystems [Helvey and Patric, 1965; Lloyd
and Marques, 1988; Neal, 1990; Reynolds and Neal, 1991;
Thimonier, 1998; Price and Carlyle-Moses, 2003]. On the
other hand, theoretical considerations and limited empirical
evidence led others to assume that gauges with larger
orifices might collect a more representative sample because
they intercept a larger canopy area [Kostelnik et al., 1989;
Loustau et al., 1992b; Holwerda et al., 2006; McJannet et
al., 2007]. For instance, Crockford and Richardson [1990]
showed in an empirical study that the variance of through-
fall caught in small funnel-type gauges was much greater
than it was for troughs, and that a much higher sample size
would have to be used for the same level of precision; they
therefore considered troughs to provide the best estimates of
mean throughfall. In the present study we showed that a
larger support will always reduce the sample size and that
the degree of this reduction will depend on the spatial
autocorrelation structure. In general, when considering the
usefulness of an increased sample support, the contribution
of small scale to the overall variability is of particular
importance. For instance, if a property varies modestly over
a short range but wildly over the extent of the study area, a
larger support is likely to be of little use. If, in contrast, most
variation occurs at a small scale, an increase in support
offers considerable benefits. Due to the dominance of either
very short scale or of weak to nonexisting spatial
autocorrelations of our throughfall data, the large reduction
in sample size with increasing support in the present study is
not surprising (Figure 4). This obvious benefit, however,
has to be interpreted with caution since the employment of
troughs is accompanied by some difficulties. Whereas the
practical problem of a splash out from troughs [e.g., Neal,
1990] seems to be surmountable [e.g., McJannet et al.,
2007], troughs are potentially prone to larger wetting and
detritus errors in comparison to funnels, in particular if the
installation angle of a trough-type collector is too low for
allowing fast drainage, or if there are too few field visits for
the removal of detritus. Moreover, the extra logistical effort
associated with the installation and maintenance of troughs
has to be taken into account. This is particularly true for
nonautomatic sampling. Our results show that the employ-
ment of trough-type collectors results in large recording
times for large events (Table 3) which could, however, be
reduced if an additional larger measuring cylinder than the
1 L cylinder used in our experiment was carried to the
field. If the overall recording time is considered, which is
determined by the recording time times the number of
collectors required to go below a certain error limit, troughs
are more efficient for all but large events (Table 3). More-
over, our comparison does not take into account the walking
time between collectors, which may even further increase
the efficiency of recording throughfall collected in troughs
compared to funnel-type collectors. Differences in the
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overall recording time among trough lengths appear to be
small. If wetting errors are indeed a function of trough
length as hypothesized by Thimonier [1998] shorter troughs
are to be preferred.

[44] To conclude, we showed that the decision con-
cerning the support is not straightforward. Troughs reduce
the sample size and integrate outliers, but their relative
benefits depend on the spatial correlation structure and the
precipitation regime. They are most useful if short-scale
variation dominates. When they have to be recorded man-
ually, the gain in time depends on event size. Due to the
large number of shorter troughs, which is needed to keep the
relative error of the mean at least below 10%, automatically
recording systems would likely consist of clusters of troughs
connected to a tipping bucket, e.g., similar to the arrangement
used by McJannet et al. [2007]. But even with such a layout,
a relative error of about 5% or less appears to be beyond
reach for highly variable ecosystems such as the tropical
forest we looked at.

4.2.2. Comparison of Sampling Designs

[45] In most throughfall investigations, collectors were
placed following a simple random sampling procedure
[e.g., Bruijnzeel and Wiersum, 1987; Lloyd and Marques,
1988; Puckett, 1991; Gash et al., 1995; Lin et al., 1997,
Schellekens et al., 1999; Carlyle-Moses et al., 2004; Keim et
al., 2005; Holwerda et al., 2006; A. Zimmermann et al.,
2007, 2008]. Some kind of systematic sampling was used
by Lawrence and Fernandez [1993] and Whelan et al.
[1998], whereas Rodrigo and Avila [2001] and Fleischbein
et al. [2005] implemented sampling procedures that may be
considered cluster random sampling; the latter study pro-
vides no information about the cluster selection procedure.
The trough system used by McJannet et al. [2007] was
replicated within their study areas, but the reader does not
get to know the rationale for the choice of the locations. In
general, since the sampling scheme does have implications
for the interpretation and comparability of the results, we
strongly suggest that authors provide sufficient information
about their sampling designs, the extent of their study area,
and the support of the collecting devices.

[46] Our sampling design comparison reveals that strati-
fication, which aims at dividing the investigation area into
more homogeneous subunits, has no effect on the accuracy
of the estimated mean in our 1 ha plot. This can be attributed
to the fact that the range of the spatial autocorrelation is quite
small compared to the extent, and throughfall volumes at
nearby locations can differ as much as those further apart.
Furthermore, even with a sample size of 200 the chance of a
repeated random choice of unfavorable close points is very
small due to the enormous number of possible sampling
locations, which amount to 10°. In contrast, we showed that
for cluster random sampling the placement of collectors
along transects at distances as close as 1 m can be disadvan-
tageous in the presence of spatial autocorrelations. The use of
longer transects than the tested 20 m likely eliminates this
negative effect, but the rationale of cluster random sampling,
reduce walking time between sampling locations, would not
be valid any more. In summary, simple random sampling
appears to be a good choice in the absence of a pronounced
spatial structure. If existence of the latter involves extensive
clusters of similar throughfall amounts, a simple random site
selection possibly overrepresents certain spots. This scenario
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appears rather unlikely since the majority of studies on spatial
variation of throughfall found merely short autocorrelations
in the range of 0 to 10 m [e.g., Loustau et al., 1992b; Bellot
and Escarre, 1998; Mottonen et al., 1999; Keim et al., 2005;
Staelens et al., 2006; A. Zimmermann et al., 2009].

4.3.

[47] Particularly in data-sparse regions, rainfall intercep-
tion model parameters are usually derived by calibration
against measured throughfall volumes. For instance, the free
throughfall coefficient, p, has frequently been determined as
the slope of the regression line of throughfall on gross
rainfall for small storms [e.g., Bruijnzeel and Wiersum,
1987; Gash et al., 1995; Schellekens et al., 1999, Link et
al., 2004; Fleischbein et al., 2005]. Likewise, break point
regression of throughfall on rainfall has been used to
identify P,’, the gross rainfall required to saturate the
canopy [e.g., Link et al., 2004; Herbst et al., 2008]. Last,
the canopy capacity S can be derived from the negative
intercept of the regression line of throughfall on gross
rainfall [e.g., Leyton et al., 1967; Bruijnzeel and Wiersum,
1987; Hutjes et al., 1990; Lankreijer et al., 1993; Gash et
al., 1995; Schellekens et al., 1999; Marin et al., 2000;
Fleischbein et al., 2005; Germer et al., 2006]. Needless
to say, the accuracy of these derived canopy parameters
depends on the accuracy of the rainfall and throughfall
measurements from which they were derived. This was
commented on in several studies, which we will discuss
from the throughfall perspective. For instance, Lloyd et al.
[1988] concluded that relatively large errors in the
measurement of the interception loss have to be accepted,
which translate into similarly large errors in the derivation
of the forest structure parameters. Bruijnzeel and Wiersum
[1987] pointed out that even if the application of a larger
number of throughfall collectors resulted in lower esti-
mates of interception loss, possibly through the inclusion
of a representative number of drip points, many studies,
including their own one, may have overestimated inter-
ception losses. In a study of rainfall interception in an
Amazon rain forest, Sellers et al. [1989] even suggested
that measurement errors of throughfall are such that
interception can be estimated reliably only on a periodic,
not weekly or event basis. Vrugt et al. [2003] studied the
identifiability of interception model parameters from mea-
surements of throughfall and canopy storage, and con-
cluded that throughfall measurements are of limited use
for the derivation of these parameters because of their
considerable uncertainty. Our results suggest that their
findings may be partly due to an insufficient accuracy of
their throughfall measurements. Uncertainty in throughfall
measurements prompted Hutjes et al. [1990] to call for an
increase in the accuracy of the observations of net rainfall
as a prerequisite for any further improvement of intercep-
tion models. Considering the results of the present study,
it appears rather difficult to meet these legitimate require-
ments. We expect the uncertainty of canopy parameter
estimates whose determination relies on small throughfall
events, e.g., P,/ and p, to be particularly high. In forest
ecosystems characterized by variations in throughfall
magnitudes as large as in ours, the maximum achievable
accuracy of estimated mean throughfall for small events is
limited to about 10%. The high number of funnel-type

Implications for Interception Monitoring

ZIMMERMANN ET AL.: SAMPLING PROCEDURES FOR THROUGHFALL MONITORING

W01503

collectors to achieve this accuracy, and the rather infrequent
use of large supports (an exception is the trough system
used by McJannet et al. [2007]), suggest that the relative
errors of the estimated throughfall means may frequently
exceed even 10%. Unfortunately, the roving collector
approach to reduce the random error, as suggested by
Bruijnzeel and Wiersum [1987], is of limited use in forest
where the throughfall distribution is skewed to the right,
e.g., due to drip points or to the overall skewness of small
events [A. Zimmermann et al., 2009]. In these cases, the
likely overestimation of the mean cannot be reduced by
changing the collector locations. To make things even more
complicated, the necessary accuracy of throughfall mea-
surements for the derivation of interception model para-
meters remains largely unknown, and calls for relative error
limits of the throughfall mean of 5% or 10% [e.g., Kimmins,
1973; Rodrigo and Avila, 2001] have yet to be evaluated
against model requirements. This would be an interesting
task for future studies. The sensitivity of model outcomes to
the model parameters has already been demonstrated [e.g.,
Loustau et al., 1992a; Schellekens et al., 1999; Liu, 2001].
In case the achievable accuracy of throughfall measure-
ments is too low to identify some of these parameters in
certain forest ecosystems, alternatives to their determina-
tion should be considered. Similar thoughts led Liu [2001]
to call for more studies that link interception model
parameters, such as storage capacity and free throughfall
coefficient, to remotely sensed data or surface area indexes
of leaves, branches, and stems. For instance, Nieschulze
et al. [2009] demonstrated the suitability of high-resolution
optical space-borne imagery for predicting regional inter-
ception. Another successful example of using alternative
data is given by Vrugt et al. [2003]. They showed that
canopy water storage dynamics derived from the attenua-
tion of a microwave signal contained sufficient information
for the identification of interception model parameters
with a high degree of confidence. Particularly in data-
sparse regions, however, where high-end techniques are not
routinely available, interception modeling will likely
continue to rely on monitoring throughfall dynamics.

5. Conclusions

[48] We summarize our results by answering the research
questions posed in the introduction:

[49] 1. Due to an increasing coefficient of variation with
decreasing throughfall event size, the required sample sizes
increase exponentially for small events. For a 20% error
limit, a sample size of up to 300 funnel-type collectors is
required, which reduces to about 100 for events larger than
a few millimeters. A more accurate estimation of mean
throughfall, approaching error limits of 10% or 5%,
involves the deployment of up to 1300 and 5200 funnels,
respectively. Considering larger events only, about 430 and
1700 collectors are needed to approach error limits of 10%
and 5%, respectively. Therefore, funnel-type collectors
coincide with either an unrealistic high sample size or a
considerable error in the estimation of mean throughfall in
the studied tropical forest.

[s0] 2. Using 10 cm wide trough-type collectors, the 20%
error limit entails the need for up to 50 troughs of 1 m
length. The number of required collectors reduces to no
more than 30 for a trough length of 2 m and furthermore to
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less than 15 for 4 and 10 m long troughs. Up to 150, 100,
75, and 30 troughs of 1, 2, 4, and 10 m length are needed
to keep the relative error below 10%. If only throughfall
amounts of larger events without strong autocorrelation
have to be determined, about 15—30 long and 30—50 shorter
troughs would suffice. For the 5% error limit, even the
employment of long troughs results in overall large sample
sizes, which can exceed 200 for the smallest events. In
general, the relative benefits of trough-type collectors depend
on the spatial correlation structure. That is to say, the
reduction of sample size due to the larger support of troughs
is smaller in the presence of spatial autocorrelations. In
addition, the gain in time for a manual handling of troughs
in comparison to funnels depends on event size; they seem to
be least beneficial for large events. Finally, a clear advantage
of troughs is the integration of unusually large or small values
in their larger collecting area, thereby reducing the risk of
an overestimation of the mean due to drip points, which
occur frequently in the studied ecosystem.

[51] 3. Regarding the sampling design, simple random
sampling is a good choice for monitoring throughfall
because of its prevalently short-scale variation. The use of
cluster random sampling tends to be less efficient if the
distances between monitoring sites are within the range of
the spatial autocorrelations.

[52] 4. As to interception modeling, we postulate a high
uncertainty of canopy parameters whose identification relies
on small throughfall events, most notably the free through-
fall coefficient and the amount of gross rainfall required to
saturate the canopy. The accuracy of throughfall measure-
ments, which is necessary to determine these parameters with
a sufficient degree of confidence, has yet to be identified. If
this accuracy turns out to be out of reach, alternatives for
their estimation will have to be considered.

[53] In general, it would be desirable if we were able to
link forest structures to spatial fields of throughfall; unfor-
tunately, the (published) database worldwide does not suffice
for such an attempt. Therefore we call for proper studies on
the spatial structure of throughfall that incorporate a suffi-
cient number of sampling points and that span a variety of
forest ecosystems in order to reassess our findings for forests
with a possibly different spatial structure.
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