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abstract: Seed dispersal should leave a signature on the spatial
distribution of recruits that can be quantified using sophisticated
techniques of spatial pattern analysis. Here we study spatial patterns
of five frugivore-dispersed tropical tree species at the Barro Colorado
Island forest, Panama, to describe detailed properties of the spatial
patterns of recruits and to investigate whether these patterns were
produced by temporally consistent mechanisms. Our spatial point
pattern analyses detected the existence of surprising spatial structures,
such as double-cluster and superposition patterns, and they allowed
for a detailed quantification of their properties. The spatial recruit-
ment patterns were composed of two independent components com-
prising a random component and a component showing a complex
spatial pattern with two critical scales of clustering. The analysis
allowed an estimation of the relative contribution of scatter dispersal
versus clump dispersal in effective seed dispersal for our study species.
Additionally, the cluster characteristics were temporally consistent
over 25 years and correlated with several species traits. We are just
beginning to discover the richness of spatial patterns found at tropical
forests, and we are confident that a combination of advanced point
pattern analysis with field data will allow for significant advances in
establishing the link between spatial patterns and processes.

Keywords: BCI tropical forest, dispersal, point pattern analysis, pair-
correlation function, multiple clustering, spatial statistics.

Introduction

The analysis of spatial patterns and processes has become
increasingly important in ecological research (e.g., Pacala
1997; Tilman and Kareiva 1997; Bolker and Pacala 1999;
Murrell et al. 2001; Amarasekare 2003). Interest in study-
ing spatial patterns has been fueled by advances in co-
existence theory showing that several mechanisms related
to aggregated spatial patterns may promote species co-
existence in plant communities (e.g., Hurtt and Pacala
1995; Chesson 2000; Hubbell 2001; Schupp et al. 2002).
Aggregated spatial patterns are common in tropical forests
(Condit et al. 2000), and many different mechanisms may
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cause this aggregation; for example, (1) dispersal limitation
causes clumps of recruits that do not correspond to to-
pography (Condit et al. 2000; Plotkin et al. 2000), (2)
contagious seed dispersal by animals that visit determinate
feeding roosts, latrines, or sleep trees may cause recruits
to grow close together (e.g., Howe 1989; Fragoso 1997;
Schupp et al. 2002; Fragoso et al. 2003; Kwit et al. 2007),
or (3) forest gaps may imprint clumped distributions of
recruits of pioneer species (e.g., Hubbell et al. 1999).

Another motivation for studying spatial patterns is that
they may conserve an imprint of past processes, consti-
tuting an ecological archive from which we may recover
information about the underlying processes (Wiegand et
al. 2003; Grimm et al. 2005; McIntire and Fajardo 2009).
However, this is challenging because the underlying pro-
cesses may be complex, for example, involving multispe-
cies trophic interactions (Fragoso 2005), because several
processes may modify the spatial patterns of plants in their
transition from seed to adult (Russo and Augspurger 2004)
and because the same types of patterns may be generated
by substantially different processes (Levin 1992; Barot et
al. 1999; Wiegand et al. 2003; McIntire and Fajardo 2009).
We argue that techniques of spatial pattern analysis em-
ployed in ecology have often been too simple to charac-
terize spatial patterns in enough detail to be able to relate
them to processes (McIntire and Fajardo 2009). For ex-
ample, recent studies in tropical forests have assigned only
a single scale of aggregation to each species (e.g., Condit
et al. 2000; Plotkin et al. 2002; Seidler and Plotkin 2006),
and we are just beginning to explore spatial patterns that
show aggregation at several scales.

Wiegand et al. (2007a) developed techniques that allow
for a sophisticated analysis of clustered spatial patterns.
By analyzing the spatial pattern of Shorea congestiflora, a
dominant species in the 25-ha Forest Dynamics Plot in a
rain forest at Sinharaja (Sri Lanka), they made an unex-
pected observation. The spatial pattern of juveniles of this
species turned out to be a superposition of two indepen-
dent patterns: a random pattern and a pattern that showed
clustering at two critical scales. The existence of two in-
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dependent juvenile plant subpopulations within the same
species must have a mechanistic explanation, since it is
quite unlikely that it may arise just by chance. One ex-
planation is that two dispersal mechanisms exist, one of
which promotes a scattered distribution of seeds while the
other is involved in the creation of seed clumps.

Howe (1989) pointed to two contrasting seed deposition
patterns of animal-dispersed tree species: scatter dispersal
and clump dispersal. The behavior of frugivores such as
small birds or bats that regurgitate, spit, or defecate seeds
singly may lead to isolated recruits. Conversely, large fru-
givores that defecate seeds in masses may cause aggregated
recruit patterns (Howe 1989). Additionally, secondary dis-
persal by central-place foragers such as ants may increase
clumping of seed deposition by depositing seeds from a
wide area within a nest or a refuse pile (Passos and Oliveira
2002). Scattered versus clustered seed deposition may oc-
cur for plant species with a diverse assemblage of dis-
persers, but this can even be caused by two different be-
havioral patterns in a single frugivore species (e.g., Russo
and Augspurger 2004). Such differences in seed deposition
behavior should imprint a signature in spatial patterns that
would remain undetected when standard methods are
used. However, detecting superposition of different dis-
persal modes is of prime importance in order to better
understand regeneration and to develop appropriate seed
dispersal kernels (Russo et al. 2006).

More generally, the question of how to link the dispersal
mechanisms with the spatial processes that they generate
is one of the large, persistent challenges of seed dispersal
biology (Clark et al. 1999a; Nathan and Muller-Landau
2000). Three approaches have advanced this endeavor. In-
verse modeling (Ribbens et al. 1994; Clark et al. 1999b)
reconstructs dispersal kernels from the spatial patterns of
mother trees and seeds, forward prediction of spatial pat-
terns directly models the behavior of the seed dispersal
agent (e.g., wind, primates, birds; Russo et al. 2006), and
backward predictions use only spatial statistics on the pat-
tern of recruits (Wiegand et al. 2007a).

In this article we focus on the approach of spatial sta-
tistics. Fitting complex point process models with two crit-
ical scales of aggregation allows us to extract detailed char-
acteristics of the recruitment patterns, and our method is
able to separate the spatial pattern of recruits stemming
from scattered versus clustered seed deposition mecha-
nisms. The basic idea is that a detailed description of the
characteristics of the spatial pattern of recruitment may
help, in concert with data on species traits, to infer the
underlying processes (McIntire and Fajardo 2009). More
specifically, we analyzed the spatial recruitment pattern of
five tree species at the seasonally moist tropical forest on
Barro Colorado Island (BCI; Panama). These tree species
were the subject of a detailed study by Wehncke et al.

(2003) analyzing seed dispersal by white-faced capuchin
monkeys (Cebus capucinus).

We performed three groups of analyses. The objective
of our first analysis was to investigate whether the re-
cruitment patterns comprised a random component that
was superposed by a second, clustered component (Wie-
gand et al. 2007a). Second, we investigated the temporal
component of the spatial pattern of recruits by analyzing
the data of different forest censuses (i.e., 1985, 1990, 1995,
2000, and 2005) separately. Our objectives here were to
determine whether the cluster characteristics were tem-
porally consistent and whether recruitment patterns of dif-
ferent census periods were spatially dependent (which
would indicate temporally persistent regeneration hot-
spots; Hampe et al. 2008). The objective of our third anal-
ysis was to assess the possible role of dispersal limitation.
If this mechanism is involved in the creation of clustering,
we would expect recruits to cluster around reproductive
trees. Finally, we related the fitted model parameters to
species traits. Our general objective was to determine to
what extent the use of sophisticated techniques of pattern
analyses, in concert with one of the best field data sets
available for tropical forests, allows the inference of pro-
cesses from spatial patterns.

Methods

Study Site and Study Species

The forest site we studied is the 50-ha (500 m # 1,000
m) Forest Dynamics Plot (FDP) at BCI (9�10�N, 79�51�W;
Hubbell et al. 1999). BCI has a moist, lowland, tropical
climate, with 2,500 mm of rain per year, a strong 3.5-
month dry season, and a year-round mean daily temper-
ature of 27�C (Leigh 1999). The island is covered by tall,
high-biomass forest. Censuses were first performed in
1982, and they have been repeated every 5 years since 1985.
All free-standing woody stems in the plot that were ≥1
cm diameter at breast height (DBH) were tagged, mapped,
and identified to species, and the DBH was recorded to
the nearest millimeter. The plot is described in detail by
Hubbell and Foster (1983), and details on census methods
can be found in Condit (1998).

We used data from all six censuses (i.e., 1981–1983,
1985, 1990, 1995, 2000, and 2005; Hubbell et al. 2005).
Our main focus was on the spatial pattern of recruits, that
is, all trees that appeared for the first time in a given census
t but that were not present in the previous census .t � 1
This allowed us to define five recruitment generations for
each species. For each generation t, we also looked at the
pattern of potential parent trees, that is, all trees of a given
species that reached reproductive size at census (seet � 1
table 1; Hubbell et al. 2005). Among the monkey-dispersed
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Table 1: Summary of species properties

Species

Growth

forma Guilda

Maximum

sapling growth

rate (mm y�1)b

Minimum

reproductive

size (cm)c

Fruit

typea

Seeds per

fruitd

Mean seed

size (mm)e

Median

or mean

distance (m)d,f

Dispersal

agentsd,f

Light-

sensitivity

coefficientg

Cecropia

insignis T G 1.771 30 Achene 1,000–2,000 2.3 .8 A, P, B 1.71

Cordia

bicolor M G .527 16 Drupe 1 8 15.3 A, P .53

Hasseltia

floribunda M S .201 8 Berry 2 5 8.9 A, P .2

Miconia

argentea M G .484 10 Berry 1–80 1 51.5 A, P, ants .48

Randia

armata U S .139 5 Berry … 10 9.9 A, P, B .14

Note: T p large tree, M p midsized tree, U p understory, G p gap, S p shade tolerant (Croat 1978); A p avian, P p primate, B p bat (Dalling et

al. 2002).
a From Croat (1978).
b Given as difference in diameter at breast height (DBH; Comita et al. 2007b).
c Given as DBH (Hubbell et al. 2005).
d From Dalling et al. (2002).
e From appendix 1 in Wehncke et al. (2003).
f From Muller-Landau et al. (2008).
g Coefficient of the log-log relationship between percentage reconstructed light and number of recruits in 5 m # 5 m plots (Rüger et al. 2009).

tree species studied by Wehncke et al. (2003), we focused
on five common species that were suitable for our purpose:
Cecropia insignis, Cordia bicolor, Hasseltia floribunda, Mi-
conia argentea, and Randia armata. Cebus monkeys def-
ecated seeds in small clumps and produced overall scat-
tered long-distance seed dispersal patterns, but other
dispersers (including bats, tapirs, and howler and spider
monkeys) primarily deposited seeds in clumps at feeding
roosts, latrines, and sleeping trees (Wehncke et al. 2003).
Some of these species experienced secondary dispersal by
dung beetles, ants, and rodents (Dalling et al. 1998). The
properties of the tree species are summarized in table 1.

Spatial Pattern Analysis

The data on the fully censused megaplots of tropical forests
sampled within the network of the Center for Tropical Forest
Science provide, for each census, a map of the location of
the stems of all trees and shrubs, their DBH values, and
their species identity. Spatial statistics provide a rich array
of techniques to analyze such point pattern data (Stoyan
and Stoyan 1994; Diggle 2003; Illian et al. 2008), which are
increasingly being used in ecology (e.g., He et al. 1997; Barot
et al. 1999; Wiegand et al. 1999, 2007a, 2007b, 2007c; Go-
reaud and Pelissier 2003; Wiegand and Moloney 2004; Get-
zin et al. 2008). Of special interest in ecology are summary
statistics such as the pair-correlation function (Stoyan and
Stoyan 1994; Wiegand et al. 1999; Condit et al. 2000) or
the distribution function of nearest-neighbor distances
(Diggle 2003), which quantify the small-scale spatial cor-

relation structures of point patterns. An assumption of most
methods of point pattern analysis is that the pattern is ho-
mogeneous, that is, it has the same properties within the
entire study region. If this is not the case, specific methods
are required (Baddeley et al. 2000; Wiegand et al. 2007c;
Getzin et al. 2008; Illian et al. 2008).

The pair-correlation function g(r) is a normalized
neighborhood density function, and it can be defined as
the expected density of trees of an average tree of the
pattern at distance r, divided by the mean density l of
trees in the study region (Stoyan and Stoyan 1994). The
value of the pair-correlation function for a random pattern
is thus , and clustering (i.e., an elevated tree den-g(r) p 1
sity) is indicated by values of . Additional infor-g(r) 1 1
mation is provided by summary statistics that consider
only the nearest neighbors. We used the cumulative dis-
tribution functions D(y) of the distances y to the nearest
neighbor (Diggle 2003; Illian et al. 2008), which gives the
probability that the average tree of the pattern has its
nearest neighbor within distance y. The short-sighted func-
tion D(y) selectively characterizes the small-scale clustering
and allows distinguishing alternative point processes with
multiple scales of clustering (Wiegand et al. 2007a). We
calculated D(y) without edge correction (Diggle 2003). The
univariate g(r) and D(y) used in the analysis of single
species can be extended to bivariate functions describing
the association (interaction) between two different types
of trees (e.g., different species or size classes). The quantity

represents the expected density of trees of type 2l g (r)2 12

at distance r of an average tree of type 1 (where l2 is the
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intensity of type-2 trees), and D12(y) is the cumulative
distribution function of the distances y from type-1 trees
to their nearest type-2 neighbor.

We contrasted specific null models to our data and used
a Monte Carlo approach for the construction of simulation
envelopes. Each of the simulations of the pointn p 199
process underlying the null model generates a g (or D)
function, and simulation envelopes with an approximate
error rate of were calculated from the fifth-highesta p 0.05
and -lowest values of 199 simulations of the g (or D) func-
tion (Stoyan and Stoyan 1994). We evaluated the fitted clus-
ter processes (and other null models) using a goodness-of-
fit test (Diggle 2003; Loosmore and Ford 2006). This test
reduces the scale-dependent information of the pair-
correlation function into a single test statistic ui, which rep-
resents the total squared deviation between the observed
pattern and the theoretical results across the distances of
interest. The ui statistics were calculated for the observed
data ( ) and simulated data ( ), and thei p 0 i p 1, … , 199
rank of u0 among all ui was determined. If the rank of u0

was 1190 (198), the data showed a significant departure
from the null model (across the distances of interest) with
error rate (0.01). For all point pattern analyses,a p 0.05
we used the grid-based software Programita (Wiegand and
Moloney 2004) with a grid size of 1 m2 to estimate the
summary statistics. This is a fine enough resolution com-
pared with the 500-m # 1,000-m size of the study plot,
and it is sufficient to respond to our objectives. Details on
the estimators of the pair-correlation function can be found
in Wiegand and Moloney (2004).

Cluster Processes

Our approach is based on extending Thomas processes
(Thomas 1949), the simplest class of cluster processes with
one critical scale of clustering. Note that the cluster pro-
cesses used here are phenomenological, not mechanistic,
and do not provide a direct link to the underlying pro-
cesses. However, we use them as benchmark processes with
directly interpretable parameters to succinctly summarize
detailed characteristics of the complex observed spatial
patterns that can be correlated with species traits.

1. Single-cluster process (Thomas process): The con-
struction principle behind the Thomas process is simple.
It consists of a number of randomly and independently
distributed clusters (fig. 1A, 1B). The position of the cluster
centers follows a homogeneous Poisson process (also
called complete spatial randomness [CSR]) with intensity
r (i.e., Ar is the number of clusters in a study region of
area A). Thus, the number of points that belong to a given
cluster follows a Poisson distribution with mean m p

(l is the intensity of points of the pattern). In figurel/r
1, . The location of the points in a givenm p 144/68 p 2.1

cluster, relative to the cluster center, has a bivariate Gauss-
ian distribution h(r, j) with variance j2 (Stoyan and Stoyan
1994). The critical spatial scale (or cluster size) of the
Thomas process is the approximate radius of the clusters,
that is, 2j (see app. A). Note that a cluster in a Thomas
process is not necessarily a cluster in a literary sense (i.e.,
not a local accumulation of points as in, e.g., Plotkin et
al. 2002). If the mean number of points per cluster is low,
the Thomas process produces empty clusters, that is, clus-
ters that did not receive points or clusters with only one
point (fig. 1B; app. A). In our example, the expected num-
ber of clusters with 0 and 1 point is and�m68e p 8.3

, respectively (figs. 1B, A1d). The pair-�m68me p 17.5
correlation function g(r) of the Thomas process yields

2 21 exp (�r /4j )
g(r, j, r) p 1 � . (1)

2r 4pj

The Thomas process thus has three parameters: the intensity
l of the process (which determines the number of points
of the pattern; lA), the intensity r of the cluster centers,
and the parameter j that determines the cluster size. The
unknown parameters (i.e., r and j) can be fitted by com-
paring the empirical function with the theoretical func-ĝ(r)
tions using minimum contrast methods (Stoyan and Stoyan
1994; Diggle 2003; Wiegand et al. 2007a).

If different mechanisms that cause clustering act in se-
quence, the observed spatial pattern may be characterized
by small clusters that are nested within large clusters (e.g.,
Kwit et al. 2007). Conversely, if different mechanisms act
independently, large and small clusters (and random pat-
terns) may be independently superposed. The following
point processes describe such cases; details on these pro-
cesses and parameter fitting are provided in appendix A.

2. Double-cluster process: The simple Thomas process
(eq. [1]; fig. 1B) can be extended to a nested double-cluster
process (fig. 1C; app. A). In this case, the centers of clusters
(with critical spatial scale 2j2) are not randomly distributed
but are themselves clustered, following a Thomas process
(with parameters j1 and r1; fig. 1C). If , this processj k j1 2

shows two easily distinguished critical scales 2j2 and 2j1.
By indicating the parameters r and j of the larger clusters
with subscript 1 and those of the smaller clusters with
subscript 2, the pair-correlation function of this double-
cluster process yields

2 21 exp (�r /4j )2g(r, j , r , j , r ) p 1 �1 1 2 2 2r 4pj2 2

2 21 exp (�r /4j )sum� , (2)
2r 4pj1 sum

where (Wiegand et al. 2007a).2 2 2j p j � jsum 1 2
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Figure 1: Example of the construction of cluster processes with one and two critical scales of clustering. The first step is a random pattern (A); in
a second step, the points of the random pattern are replaced by clusters of points yielding a single-cluster Thomas process (B); and in a third step,
the points of the single cluster process are replaced by clusters of points yielding a nested double-cluster process with two critical scales of clustering
(C). The random pattern in A comprises 68 points, the pattern in B comprises 144 points that are randomly distributed over 68 clusters with a
cluster size of m (circles), and the pattern in C comprises 1,160 points that are randomly distributed over 144 small clusters with a cluster2j p 131

size m.2j p 5.42

3. Cluster-cluster superposition: Two simple Thomas
processes (eq. [1]) may be independently superposed. By
denoting the relative intensities of these processes by p1

and p2, respectively, and by using the formulas of Illian et
al. (2008, p. 371), the pair-correlation function of the su-
perposition process yields

2 21 exp (�r /4j )22g(r, j , r , j , r ) p 1 � p1 1 2 2 2 2r 4pj2 2

2 21 exp (�r /4j )12�p , (3)1 2r 4pj1 1

where is the contribution of2 2 2 2p 1/r exp �r /4j /4pj( ){[ ( )] }2 2 2 2

Thomas process 2 and is the2 2 2 2p 1/r exp �r /4j /4pj( ){[ ( )] }1 1 1 1

contribution of Thomas process 1 (Stoyan and Stoyan
1996; Wiegand et al. 2007a). Here the parameters r and
j of the two Thomas processes are indicated with sub-
scripts 1 and 2. Comparison of equation (3) with the pair-
correlation function of the double-cluster process (eq. [2])

shows that both have the same functional form. However,
the estimate of j1 will yield a slightly smaller value than
jsum because .2 2 2 2j p j � j 1 jsum 2 1 1

4. Double-cluster–random superposition: The pair-
correlation function of the independent superposition of
a double-cluster process (eq. [2]) and a random pattern
yields

2 21 exp (�r /4j )22g(r, j , r , j , r ) p 1 � p1 1 2 2 C 2r 4pj2 2

2 21 exp (�r /4j )sum2�p , (4)C 2r 4pj1 sum

where and where pC is the proportion of2 2 2j p j � jsum 1 2

the points belonging to the double-cluster component pro-
cess (Wiegand et al. 2007a). The pair-correlation function
of the superposition (eq. [4]) yields exactly the same func-
tional form as that of a double-cluster process (eq. [2]),
but a superposition process will have more isolated points
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and larger nearest-neighbor distances (see fig. 2A, inset;
fig. 2D), which suggests the use of the distribution function
D(y) of the nearest-neighbor distances as a criterion to
distinguish between both processes. Additionally, the in-
tensity of cluster centers of the double-cluster component
process is given by , where r∗ is the corresponding∗ 2r p r pC

estimate for the superposition pattern (Wiegand et al.
2007a). The pattern is therefore likely to be a double-
cluster–random superposition pattern if ∗ 0.5(r /r ) p1 1

. Note that the properties j1, j2, and∗ 0.5(r /r ) p p r /r2 2 C 2 1

of the double-cluster pattern are not affected by super-
position with a random pattern and are therefore more
credible characteristics of clustering than are r1 and r2.

Separating a Superposition Pattern

The random component of a double-cluster–random su-
perposition pattern of a given recruitment generation can
by separated by identifying isolated recruits that have no
neighbors within a certain separation distance. We then
joined the resulting component patterns of all five re-
cruitment generations for overall analyses and tested
whether the resulting component pattern of isolated re-
cruits was a random pattern (i.e., follow CSR), whether
the two component patterns were independent, and
whether the second component pattern followed a pure
double-cluster process. Additionally, we expect

(see process 4 above). In prac-∗ 0.5 ∗ 0.5(r /r ) p (r /r ) p p1 1 2 2 C

tice we tested several decomposition distances to find the
one that best satisfied all criteria (for details, see app. A).
Note that we cannot expect perfect fits, but the benchmark
model should be close to the data to produce credible
parameter estimates.

Adult-Recruit Relationships

One natural hypothesis to explain aggregation of recruits is
that the clustering is imprinted by the distance to the mother
trees and limited dispersal distances. In this case, the recruits
of a given generation should be clustered around the re-
productive trees from the previous census. Note that this is
only a coarse test because, for example, it does not consider
the fertility of individual tress (which is important, e.g., in
inverse modeling of dispersal kernels; Muller-Landau et al.
2008). To conduct the test, we contrast the bivariate adult-
recruit pattern, determined separately for each recruitment
generation, with the classical null model of independence
(Goreaud and Pélissier 2003). However, to succinctly pre-
sent our results, we combined the results of the five indi-
vidual censuses into one average test statistic (see app. C).
Following our hypothesis, we included only recruits that
belonged to the clustered-component pattern.

Results

Double-Cluster Pattern with Random Component:
Cecropia insignis

Although the pair-correlation function of the C. insignis
recruitment could be fitted well to that of the double-
cluster process (eq. [2]; fig. 2A), the distribution function
D(y) of the distances y to the nearest neighbor clearly
shows that the pattern cannot be described by a pure dou-
ble-cluster process (fig. 2A, inset). A substantial proportion
of recruits had their nearest neighbor at a distance y that
was much larger than expected under this null model (i.e.,
the observed D(y) is substantially below the expected
D(y)). This suggests that the pattern of recruits is a double-
cluster–random superposition. We therefore decomposed
the original pattern of each recruitment generation into
two components: a cluster-component pattern that con-
tained those recruits that had their nearest neighbor at a
distance smaller than a given separation distance (fig. 2B),
while the rest were contained in the isolated-component
pattern (fig. 2E). A distance of 8 m yielded the best sep-
aration distance.

Indeed, the isolated component was, in good approxi-
mation, a random pattern (fig. 2F ), and both component
patterns were independent (fig. 2F, inset). The double-
clustered component pattern yielded a good fit with the
pair-correlation function (fig. 2D), and the empirical dis-
tribution function of distances to the nearest neighbor
approximated the expectation under the null model rea-
sonably well (see fig. 2D, inset; fig. 2A). The critical scales
of clustering were m and m, the largerr p 16.6 r p 5.3C1 C2

clusters contained on average 17.6 recruits (and 2.1 small
clusters), and the small clusters contained on average 8.2
recruits (table 2). For a detailed description of the analysis,
see appendix B.

Separate analyses of the pooled 1985, 1990, and 1995
recruits (low recruit numbers did not allow for individual
analyses) and the 2000 and 2005 recruitment generations
(fig. B1) revealed consistent double-cluster structures
among censuses with consistent critical scales (table 2).
Recruitment during the 1985–1995 period was relatively
low (some 100 recruits per census), but it increased
strongly in 2000 and 2005 to 407 and 692 recruits per
census, respectively. The proportion of isolated recruits
was high during the 1985–1995 periods (31%), but it de-
creased to 6% and 12% for the 2000 and 2005 censuses,
respectively (table 2). The spatial patterns of all subsequent
recruitment generations were independent (fig. B2), the
clustered component patterns of different periods were
independent (fig. B2), and the sum of the estimated num-
bers of large clusters (26, 14, and 34 for the first, second,
and third periods, respectively; table 2) approximated the
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Table 2: Summary of the results of the fit of the recruitment data with the double-cluster process (eq. [2])

Species, component N Nisol RNN pC pC1 pC2

Characteristics of

large clusters Characteristics of small clusters

Ar1 jsum 2j1 (m) m1 Ar2 2j2 (m) m2 r2/r1 j1/j2

Figure 1 example:

Thomas process 144 … … 1.00 … … 68 … 17.4 2.1 … … … … …

Double cluster 1,160 … … 1.00 … … 68 9.1 17.4 17.1 144 5.3 8.1 2.1 3.3

Cecropia insignis, all censuses:

All recruits 1,406 … … … … … 88 9.0 17.2 15.9 197 5.3 7.1 2.2 3.3

Cluster 1,206 200 8 .9 .88 .86 69 8.7 16.6 17.6 147 5.3 8.2 2.1 3.1

C. insignis, single census:

1985�1990�1995 cluster 212 95 8 .7 … … 26 7.4 14.1 8.0 50 4.4 4.3 1.9 3.2

2000 cluster 382 25 8 .9 … … 14 8.6 16.5 26.7 39 5.1 9.7 2.8 3.2

2005 cluster 612 80 8 .9 … … 34 8.6 16.3 18.1 78 5.3 7.9 2.3 3.1

Cordia bicolor western, all censuses:

All recruits 695 … … … … … 90 10.1 20.0 7.7 920 2.6 .8 10.2 7.6

Cluster 531 164 16 .8 .78 .76 54 10.0 19.9 9.8 531 2.6 1.0 9.8 7.5

C. bicolor western, single census:

1985 cluster 80 31 16 .7 … … 20 5.3 10.6 3.9 None None … … …

Cluster 1990 309 34 16 .90 … … 44 8.7 17.2 7.1 336 2.4 .9 7.7 7.3

1995�2000�2005 cluster 151 90 16 .6 … … 36 7.7 15.1 4.2 267 2.6 .6 7.4 5.8

C. bicolor eastern, all censuses:

All recruits 209 … … … … … 69 10.8 21.5 3.0 283 2.7 .7 4.1 7.9

Cluster 113 96 16 .5 .61 .53 26 10.0 19.8 4.4 80 2.8 1.4 3.1 7.1

C. bicolor, entire plot:

1995�2000�2005 cluster 193 150 16 .6 … … 50 7.8 15.5 3.9 346 2.5 .6 7.0 6.1

Miconia argentea, all censuses:

All recruits 1,666 … … … … … 309 6.3 12.2 5.4 977 3.0 1.71 3.2 4.1

Cluster 1,331 335 12 .80 .78 .90 186 6.3 12.3 7.2 784 2.7 1.70 4.2 4.6

M. argentea, single census:

1985 cluster 232 56 12 .8 … … 45 7.3 14.4 5.2 104 2.8 2.23 2.3 5.1

1990 cluster 416 101 12 .80 … … 57 7.7 15.1 7.3 292 2.6 1.42 5.1 5.9

1995 cluster 299 52 12 .9 … … 41 5.1 9.9 7.4 258 2.2 1.16 6.4 4.5

2000 cluster 190 55 12 .8 … … 33 5.4 10.4 5.8 84 2.7 2.26 2.6 3.9

2005 cluster 194 71 12 .7 … … 48 6.8 13.3 4.0 215 2.9 .90 4.5 4.6

Randia armata, all censuses: 340 0 … 1.00 … … 129 27.8 55.5 2.6 2,395.8 3.5 .14 18.5 16.0

Hasseltia floribunda, all censuses: 147 0 … 1.00 … … 137 10.0 19.8 1.1 571 3.0 .26 4.2 6.7

Note: N p total number of recruits; Nisol p number of recruits in isolated component pattern; RNN p decomposition distance used to separate the clustered

and the isolated component patterns (NN p nearest neighbor); pC p proportion of recruits in isolated component pattern; pC1, pC2 p predicted values of

pC based on the fitted parameters r of the large and small clusters, respectively; r1, jsum p fittest parameters of large clusters; r2, j2 p fittest parameters of

the small clusters; m1, m2 p average number of trees in one large-scale and one small-scale cluster, respectively; and p average number of small clustersr /r2 1

in one large cluster.

number of clusters of the joined clustered component pat-
tern well (69; table 2).

Cordia bicolor

The spatial pattern of recruits of the species C. bicolor
showed a heterogeneous pattern (fig. 3B), with a higher
density at the western part of the plot. This part of the plot
is dominated by a low plateau habitat, and the eastern sub-
plot contains a high plateau and slope habitats (Harms et
al. 2001). Small trees of C. bicolor show a weak positive
association with the low plateau ( ; Comita et al.P p .0512

2007a). However, the patterns were approximately homo-
geneous within each subplot (fig. 3B). We therefore analyzed
the western and eastern parts of the study plot separately.

We found that the patterns of the two subplots were,
in good approximation, independent superpositions of a
double-clustered and a random pattern. Despite the het-
erogeneous appearance of the accumulated recruitment
patterns (fig. 3B, 3E), the two subplots showed striking
structural similarities. First, the critical scales of the dou-
ble-cluster processes (i.e., 20 and 2.8 m) were the same
for the two subplots (table 2). Second, the average number
of recruits per small cluster was low (i.e., andm p 1.02
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1.4 for the western and the eastern subplot, respectively;
table 2), and not all recruits had a neighbor within the
same small cluster (the Poisson distribution predicts that
only 41% and 54% of all C. bicolor recruits of the western
and the eastern subplot, respectively, had at least one
neighbor within the small cluster). However, this occa-
sional pairing of recruits imprinted a strong signal at the
pair-correlation function (i.e., a steep decrease in g(r) from
scale r p 1 m to scale r p 5 m; fig. 3A, 3C, 3D, 3F).
Third, the random component patterns from the two sub-
plots formed one (homogeneous) random pattern (fig.
3H ). However, the average number of recruits per large
cluster (m1) was two times larger at the western subplot
than at the eastern subplot (table 2). For details, see ap-
pendix B.

Analysis of the temporal dynamics of the recruitment
patterns revealed interesting additional insights. First, the
number of isolated recruits was relatively constant, yield-
ing an average � SD of recruits at the western31 � 9
subplot and recruits at the eastern subplot.19.2 � 3.4
However, the number of recruits assigned to the clustered
component patterns showed a marked peak in the 1990
census, yielding more than four times more recruits than
in the other census periods. Second, the temporal evo-
lution of the clustered component pattern of the 1985 and
the 1990 censuses and the pooled data of the 1995, 2000,
and 2005 census periods suggest an invasion process at
the eastern subplot (fig. B3). While the 1985 census data
showed only a few C. bicolor clusters (fig. B3a), recruit
clusters had already invaded most of the eastern plot in
the 1990 census (fig. B3c). Finally, at the 1995�2000�2005
census, both the cluster component and the isolated com-
ponent yielded a homogeneous pattern over the entire 50-
ha plot (fig. B3e, B3g). The cluster component of the
1995�2000�2005 census could be fitted well with a
double-cluster process (fig. B3f ), the isolated component
was a random pattern (fig. B3h), and the two component
patterns were independent (fig. B3h, inset).

Analysis of the cluster-component patterns of the west-
ern subplot showed that the patterns of recruits of the
1985 and 1990 (and the 1995 and 2000�2005) censuses
were independent; however, those of the 1990 and 1995
censuses were not, and these showed strong attractions
especially at spatial scales !5 m (fig. B4).

Double-Cluster Pattern with Random Component:
Miconia argentea

The spatial pattern of M. argentea can be decomposed into
a double-clustered component pattern (fig. 4B, 4D) and
a random component pattern (fig. 4E, 4F), although the
two component patterns are not fully independent (fig.
4F, inset). The double-clustered component pattern

yielded a good fit with the pair-correlation function at
smaller scales (fig. 4D). We observed departure from the
null model at scales of 20–35 m, which is due to some
large clusters in the area of the swamp and the stream in
the western part of the plot (fig. 4B). (Large M. argentea
trees showed a weak association with the swamp habitat;
Comita et al. 2007a.) The critical scales of clustering were

m and m, the larger clusters con-r p 12.3 r p 2.7C1 C2

tained 7.2 recruits (and 4.2 small clusters) on average, and
the small clusters contained 1.7 recruits (table 2).

Separate analyses of the different recruitment genera-
tions revealed consistent double-cluster structures among
censuses, with critical scales ranging between 10–15 m and
2.2–2.9 m (table 2). The average number of small clusters
within large clusters ranged between 2.3 and 6.4 (table 2).
Interestingly, the spatial patterns of all subsequent re-
cruitment generations were spatially dependent at scales
!10 m (fig. B6), but recruitment generations that were 10
years apart were independent. Consequently, the sum of
the estimates of the number of large-scale and small-scale
clusters of individual censuses was larger than the corre-
sponding estimates of all censuses together (186 vs. 234
and 784 vs. 953; table 2). This points to an overlap in
clusters among generations. Thus, M. argentea showed re-
generation hotspots (Hampe et al. 2008) that consistently
persisted from one into the next recruitment generation
(but not longer).

Pure Double-Cluster Pattern: Hasseltia floribunda

The large trees of the species H. floribunda showed some
weak negative habitat association to the high plateau and
a positive association to the small areas of swamp and
streamside (Harms et al. 2001). This habitat association,
however, did not translate into heterogeneity of the recruit
pattern; the pair-correlation function dropped for larger
scales to values of 1 (fig. 5A). The recruits showed a dou-
ble-cluster pattern, with critical scales of clustering of 20
m and 3 m (fig. 5A; table 2) but without superposition of
a random component pattern. The pair-correlation func-
tion of the data was in good agreement with the double-
cluster model (fig. 5A). However, the distribution function
of the distances to the nearest neighbor showed minor
differences at nearest neighbor distances 120 m (fig. 5A,
inset). The average number of recruits per small cluster
was low, with (table 2). Application of a Poissonm p 0.262

distribution with mean predicts that 88% of allm p 0.262

H. floribunda recruits occurred alone, 11% were in pairs,
and 1% were in groups of three. This small-scale grouping
left a clear signature at the pair-correlation function (i.e.,
a steep decrease from scales m to m; fig. 5A).r p 1 r p 6
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Figure 5: Analysis of spatial patterns of Hasseltia floribunda (A, B) and Randia armata (C, D). Conventions are as they are in figure 2. Note the
logarithmic scale of the Y-axis in A.

Pure Double-Cluster Pattern: Randia armata

The spatial pattern of recruits of R. armata could be fitted
well to a double-cluster process with critical scales of clus-
tering of 56 m and 3.5 m (fig. 5C; table 2), but no su-
perposition pattern could be detected. The mean number
of recruits per large and small cluster yielded andm p 2.61

, respectively (table 2). Thus, 93% of all H. flo-m p 0.142

ribunda recruits are predicted to occur alone, and 7% are
predicted to occur in pairs. The 7% that were grouped
recruits left a detectable signal of small-scale clustering in
the pair-correlation function.

Adult-Recruit Relationships

Our analysis revealed a tendency toward repulsion between
recruits and reproductive trees of C. insignis (fig. B7a) and
independence for C. bicolor (at the western subplot; fig.
B7b) and for R. armata (fig. B7e). However, recruits of

the species H. floribunda were clearly “attracted” by re-
productive trees at distances up to 10 m, which coincides
with the critical scale of larger-scale clustering (fig. B7c).
Recruits of the clustered-component pattern of M. argen-
tea were positively associated with reproductive trees at
distances 120 m (fig. B7d).

Relationship Between Model Parameters and Species Traits

An expected geometric relationship is that the number of
small clusters that fit into large clusters (with respect to area;
i.e., ) should be positively correlated with the av-2 2pj /pj1 2

erage number of small clusters within large clusters (i.e.,
). Indeed, the Spearman rank correlation yieldedr /r2 1

( ; table D1). We found several highly sig-r p 0.8 P ! .01Sp

nificant correlations between species characteristics and
cluster model parameters (table D1). The species property
that most strongly correlated with cluster properties was the
coefficient b characterizing the light sensitivity of recruits



E118 The American Naturalist

(Rüger et al. 2009). The higher the light sensitivity, the larger
the mean number of recruits in small and large clusters (b
vs. m1: , ; b vs. m2: ,r p �0.88 P ! .01 r p �0.94Sp Sp

). Additionally, the more light-sensitive the recruits,P ! .01
the smaller the size of the small clusters relative to the size
of the large clusters (b vs. : , ). Thej /j r p �0.93 P ! .011 2 Sp

same tendencies were found for the seed weight and the
maximal sapling growth rate (an indicator of a species’ shade
tolerance; Comita et al. 2007a), but these were somewhat
weaker (table D1). A crude measure of dispersal quantity
by Cebus monkeys (eff; table D1) was positively correlated
with the light coefficient b. Interestingly, the proportion pC

of recruits that belong to the random component pattern
was not strongly correlated with any species property.

Discussion

In this article we provide methods of spatial statistics that
can help to discern mechanisms involved in the (animal)
dispersal of plant seeds from analysis of the spatial pattern
of recruits. This is an important issue because, in tropical
forests for example, up to 90% of trees and understory
shrubs have fleshy fruits that attract animals as seed dis-
persers (e.g., Howe and Smallwood 1982; Muller-Landau
and Hardesty 2005). Consequently, linking dispersal mech-
anisms with the spatial processes that they generate and
with the observed spatial patterns of plants that recruit to
a particular life stage is one of the large challenges of seed
dispersal biology (Clark et al. 1999a; Nathan and Muller-
Landau 2000). Because seed dispersal in nature is difficult
to quantify directly for plants and especially for forest trees,
inverse models (Ribbens et al. 1994; Clark et al. 1999b)
and mechanistic models (Russo et al. 2006; Carlo and
Morales 2008; Levey et al. 2008) have played a prominent
role in predicting the spatial distributions of seeds (Muller-
Landau and Hardesty 2005; Russo et al. 2006). Inverse
modeling techniques based on seed dispersal kernels are
descriptive techniques that have difficulties in accounting
for overlapping seed shadows caused by different dispersal
agents (Dennis and Westcott 2007) and describing spatially
aggregated seed-deposition patterns. However, if seed dis-
persal models do not consider clumping of seeds, biased
estimates of seedling population dynamics will result
(Chesson et al. 2005).

Our method focuses on a detailed description of the
spatial patterns. We analyzed the spatial patterns of recruits
at the BCI tropical forest and found marked, clearly iden-
tifiable spatial structures that were temporally consistent.
This is an important result that shows that our techniques
allow for the extraction of detailed information from the
patterns (i.e., uncertainty in the fitted parameters is mod-
erate or small). More importantly, the temporal consis-
tency of the spatial structures strongly suggests that bio-

logical organization exists and that the link between
process and pattern could be uncovered (McIntire and
Fajardo 2009). A close description of the characteristics of
the observed spatial patterns (e.g., critical scales of clus-
tering, relative proportions of scattered vs. clustered re-
cruits, temporal consistency of spatial patterns) may allow
for deriving hypotheses and inferences about the under-
lying spatial processes. However, additional data on species
properties are necessary to correctly interpret the patterns
in terms of the processes.

Finally, implementing and testing these hypotheses as ap-
proaches of forward prediction of spatial patterns that are
based on directly modeling the behavior of the seed dispersal
agents such as wind, primates, or birds (e.g., Russo et al.
2006; Carlo and Morales 2008; Levey et al. 2008) are some
of the most important next steps for dispersal biology. The
spatial analysis techniques presented here can serve for both
in this respect, in designing models and testing the reliability
of the predicted patterns (i.e., to determine whether the
model produces patterns that resemble the observed pat-
terns; Wiegand et al. 2003; Grimm et al. 2005).

Gains of Our Approach

Our approach allows for an extraction of information from
spatial patterns that has previously not been possible. Our
analyses revealed the existence of surprising spatial struc-
tures such as the double-cluster and superposition pat-
terns. All five study species showed clustering at (at least)
two critical spatial scales, and three species showed an
independent superposition pattern of a double-cluster pat-
tern with a random pattern. When we first detected such
complex spatial patterns for a tropical tree species in Sri
Lanka, we suspected that they might be rare (Wiegand et
al. 2007a). However, our current analysis suggests that
double-cluster and superposition patterns may be more
common than previously thought but were not detected
because appropriate methods to do so were not available.
Many different spatial processes and mechanisms such as
gap structures, soil nutrients, dispersal limitation, or sec-
ondary seed dispersal by animals are known to create clus-
tered spatial patterns in tropical forests (e.g., He et al. 1997;
Hubbell et al. 1999; Plotkin et al. 2000; Svenning et al.
2006) and other plant communities (Purves and Law 2002;
Getzin et al. 2008). There is no reason to assume that all
should show the same critical spatial scale (Wiegand et al.
2007a). Multiple cluster processes should therefore be a
common phenomenon. What is indeed more surprising
is the existence of clear superposition patterns, as was
found here for the three pioneer species.

The superposition patterns detected here have conse-
quences for estimates of seed dispersal kernels. We found
that the recruitment of the pioneer species we analyzed
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comprised two independent populations: one in which
recruits appear in groups and one resulting in a random
pattern within the study plot. It is somewhat unlikely that
such a pattern would be caused by (fine-scale) environ-
mental conditions (especially regarding the specific inva-
sion case of Cordia bicolor). It is more likely that this
phenomenon is caused by two different seed dispersal
modes: one scatter-dispersal mode and one clump-
dispersal mode (Howe 1989). This means that our pattern
analysis techniques are able to determine the relative im-
portance of scatter dispersal for effective seed dispersal
(i.e., seeds that survived at least until the recruit stage) on
only the basis of the information about recruits, without
direct field measurements of seed dispersal. This surprising
result demonstrates the high potential of refined spatial
pattern analysis techniques. In one case (Cecropia insignis),
our result contrasted sharply with previous inferences from
inverse modeling. We found that the random component
pattern comprised, on average, 14% of all recruits, but
estimates of seed dispersal kernels based on seed trap data
suggested a strong dispersal limitation for this species (the
estimated a median dispersal distance was 0.8 m; Dalling
et al. 2002). Note that C. insignis is a difficult species to
detect, with very small seeds that may pass through the
mesh traps or that may otherwise go undetected (Dalling
et al. 2002). Our methodology is thus a valuable method
to complement the limitations of the traditional analyses
of seed dispersal kernels. However, an alternative hypoth-
esis would be that isolated recruits appear in randomly
spaced small canopy gaps.

In general, the spatial structures revealed by our analyses
were temporally consistent. The constancy in the structural
properties of the three pioneer species suggest that the
cluster component patterns may be imprinted by animals
with a particular behavior (e.g., scatter dispersal vs. clump
dispersal), probably in combination with local conditions
such as light climate within canopy gaps (deciding ger-
mination and survival and shaping the cluster sizes). How-
ever, the numbers of clusters (and recruits) varied some-
what among years, probably as a consequence of
interannual variations in fecundity. The cluster component
of the recruit populations of C. insignis comprised ran-
domly distributed clusters that were also independent
among censuses. This is consistent with the large growth
rate of C. insignis (table 1) and its short-lived seed bank,
wherein most seeds survive !1 year (Gallery et al. 2007).
However, although the species Miconia argentea showed
temporally consistent double-cluster structures, the clus-
ters were not independent between subsequent censuses,
pointing to certain regeneration hotspots (Hampe et al.
2008) that persisted from one recruitment generation into
the next. These hotspots might be related to a positive
association of recruits at distances of 20–40 m away from

reproductive trees (fig. B7), which is in accordance with
large dispersal distances (with a median distance of 51.5
m; Dalling et al. 2002). However, these hotspots might also
be mediated by the positive association of trees of this
species to the swamp habitat (Harms et al. 2001; Comita
et al. 2007a) or related to the somewhat lower growth rate,
which was the smallest among the pioneer species (table
1). The spatial patterns of subsequent C. bicolor recruit-
ment generations showed spatial attraction for only the
1990 and 1995 censuses. One reason for this may be that
the census artificially divided one actual recruitment gen-
eration into two; note that the 1990 census showed an
unusual peak in recruitment.

We found indications for only one species (Hasseltia
floribunda) that the critical scales of clustering were related
to the position of reproductive trees. This suggests that
the seed shadows of many species may be considerably
modified during the transitions to recruits, for example,
by mortality due to insufficient light or Janzen-Connell
effects (Janzen 1970; Connell 1971). For C. insignis, we
observed small-scale repulsion between reproductive trees
and recruits that points to Janzen-Connell effects. Cor-
relations of cluster characteristics and measures of shade
tolerance suggest that species-specific interactions between
the local light climate and shade tolerance may be addi-
tionally involved in generating the observed cluster struc-
tures. For example, recruits of light-demanding species
group together more than do recruits of shade-tolerant
species, and the more light-demanding the recruits, the
smaller the size of the small clusters relative to the size of
the large clusters. A crude measure of dispersal quantity
by Cebus monkeys was strongly correlated with the mea-
sures of shade tolerance, which precludes stronger state-
ments on the role of Cebus in generating the observed
patterns. However, our results clearly show that biological
organization exists, and we are confident that analyzing
more species with the methods presented here will allow
for stronger statements.

Conclusions

Our analyses revealed the existence of surprising spatial
structures, such as double-cluster and superposition pat-
terns, and our results suggest that these structures may be
much more common phenomena (at least for tropical tree
species) than previously thought. These are considerable
gains, but it has to be noted that these findings required
more complex null models than are usually used in ecology
to describe the complex structures found in ecosystems.
Our findings clearly suggest that biological organization
exists, but the observed spatial recruitment patterns cannot
be attributed to a universal mechanism but rather to id-
iosyncratic interactions among several mechanisms such
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as animal dispersal (creating clumped and scatter seed
depositions), local light climate and regeneration hotspots,
and dispersal limitation (shaping the critical scales of clus-
tering). An important challenge of future research is to
disentangle these mechanisms by conducting analyses of
the type presented here, but for a large number of species,
and to systematically relate species traits to characteristics
of the observed spatial patterns. We are just beginning to
discover the richness of spatial patterns found in tropical
forests, and we are confident that a combination of ad-
vanced point pattern analysis with field data will allow for
significant advances in establishing the link between spatial
patterns and processes.
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APPENDIX A

Cluster Processes

Single-Cluster Process (Thomas Process)

The Thomas process (Thomas 1949) is an algorithm that produces relatively realistic clustered point patterns based
on a simple stochastic construction principle. It has the big advantage that its pair-correlation function and the
distribution function of the nearest neighbor distances can be calculated analytically (Stoyan and Stoyan 1994). This
allows one to fit the Thomas process to given point pattern data with standard tools. Consequently, the Thomas process
has been applied to tropical tree species in several studies (e.g., Plotkin et al. 2000; Seidler and Plotkin 2006; Wiegand
et al. 2007a). However, note that the Thomas process is phenomenological, not mechanistic, and it does not provide
a direct link to the underlying processes, although the parameter j reflecting the size of clusters has been found to
correlate with the dispersal capacity of tropical tree species (Seidler and Plotkin 2006). Here we used the Thomas
cluster process and other more complex cluster processes that are based on the Thomas process as benchmark processes
with known structures for measuring basic properties of the aggregation structures of the patterns of recruits (Wiegand
et al. 2007a). This is a prerequisite for deriving specific hypotheses about the underlying processes. Note that the fitted
parameters of the cluster processes allowed us to simulate point patterns with spatial structures similar to the observed
point pattern.

The construction principle of the Thomas process is simple: a certain number of clusters are randomly and inde-
pendently distributed over a given study region with area A (see fig. A1a). The pattern shown in the example comprises
68 clusters (fig. A1a, gray disks). The positions of the cluster centers (fig. A1a, dots) follow a homogeneous Poisson
process with intensity ha�1 (fig. A1b).r p 68/(1,000 m # 500 m) p 1.36

When the coordinates of the cluster centers are determined, the individual clusters are constructed. To this end, the
points of the pattern (the pattern shown in fig. A1c, which comprises points) are randomly assigned to thelA p 144
clusters. Thus, the number of points that belong to a given cluster follow a Poisson distribution with mean m p

. Note that this also means that a given cluster may be empty (i.e., there is no point assigned tol/r p 144/68 p 2.1
the cluster); the probability of a given cluster being empty is , and the probability of havingP[n p 0, m] p exp (�m)
just one point is . In the example, 11 clusters were empty clusters, 14 clusters received oneP[n p 1, m] p m exp (�m)
point, 18 clusters received two points, and the maximal observed number of points per cluster was six (fig. A1d, inset).
It is important to keep this construction principle in mind when interpreting the parameters that were fitted to a
given data set using a Thomas process.

The second part of the construction of the clusters is the determination of the locations of the points that belong
to a given cluster: the locations of the points in a given cluster relative to the cluster center follow a bivariate Gaussian
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distribution h(r, j) with variance j2. Note that other distribution functions are also possible. For example, in a Matern
process, the points of a given cluster are randomly placed within a disk of radius R around the cluster center (Stoyan
and Stoyan 1994). However, the distribution used in the Thomas process results in a simpler equation for the pair-
correlation function, which makes it more suitable as a construction unit for more complex double-cluster processes.
It is also biologically more plausible that the density of points within a cluster declines with increasing distance from
the cluster center.

The Thomas process has three parameters: the intensity l of the process (which determines the number of points
of the pattern; lA), the intensity r of the cluster centers, and the parameter j that determines the cluster size. The
pair-correlation function g(r) of the Thomas process yields

2 21 exp (�r /4j )
g(r, j, r) p 1 � . (A1)

2r 4pj

If the number of clusters (rA) decreases (under a fixed number of points), the degree of clustering of the pattern
increases because the points are now concentrated in fewer clusters. The degree of clustering will also increase if the
variance j of the normal distribution (which determines the location of the points relative to the cluster center)
decreases, because the points are now closer together. The distance from the cluster centers, within whichr p 2jC

86% of all points are located, can be used to describe the typical size of the clusters of the Thomas process. In the
example, the cluster size is 17.4 m. The approximate area covered by a given cluster is thus given by 2A p pr pC C

. Because formally distinct clusters may coalesce, it is difficult to identify the points that belong to a given cluster24pj

with any confidence (fig. A1c). Note that this definition of a cluster size is not directly related to properties of individual
clusters (e.g., the number of points belonging to a given cluster; e.g., Plotkin et al. 2002) but is based on the (stochastic)
construction principle of the clusters. If the average number of points per cluster is high (say, ; see fig. A2), mostm 1 3
of the clusters have more than one point and could be named clusters in a literary sense. Thus, care has to be taken
to not interpret the fitted parameters too literally (i.e., search clearly visible clusters with radius ) if the meanr p 2jC

number of points per cluster is low (fig. A2).m p l/r
“Empty clusters,” or clusters with only one or two points, may frequently occur, especially if the number of points

of the process is relatively low. However, even if the total number of points of the process is relatively high, a given
cluster pattern may be characterized by ; that is, there are more clusters than points in the process. Althoughr k l

this is somewhat counterintuitive on the first viewing (with a descriptive definition of clusters in mind), it makes
perfect sense and describes a situation where most points are isolated points but where occasionally two or three points
are paired close together. This is an important class of cluster processes that is well covered by the Thomas process.
For example, if the mean number of points per cluster is , the Poisson distribution predicts that 78% arem p 0.25
empty clusters, 19% are clusters with one point, and 3% are clusters with more than one point. With this constellation,
78% of all points of the Thomas process are isolated points (i.e., belonging to clusters with only one point), 19% of
all points have one nearby neighbor (i.e., they belong to clusters with two points), and 3% belong to clusters with
three or more points.

The pair-correlation function at is related to the probability that a given point of the pattern has a neighborr p 0
very close by. This is a useful characteristic of the Thomas process that describes the overall degree of clustering. It
yields

1 1 1 1
g(r p 0, j, r) p 1 � p 1 � . (A2)

2r 4pj r A C

Thus, both the area of the cluster and the number of clusters determine the overall clustering in the same way. This
reflects the intuitive fact that the degree of clustering may increase if there are fewer clusters or if the area covered
by individual clusters is smaller. However, the decline of the pair-correlation function with scale r depends on only
the cluster size A C:

21 pr
g(r, j, r) p 1 � exp � , (A3)( )rA AC C
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with a rate of decline that is given by the relative area of the disk with radius r measured in units of the cluster size
A C.

Double-Cluster Process

The simple Thomas process described in the last section can be extended to a double-cluster process. In this case, the
cluster centers are themselves clustered and follow a Thomas process (fig. A1e). Note that this nested construction
principle is the same as it is for a Thomas process, where the cluster centers follow a complete spatial randomness
(CSR) process (also called a multigeneration process; Diggle 2003). Thus, small clusters are located within larger clusters
(fig. A1e). In the example, there are 1,160 points distributed over 144 small clusters with size m; thus, therer p 5.3C

are, on average, points within one small cluster, and small clusters with only a few points are rarem p l/r p 8.06
(fig. A1f, inset; table 2).

The double-cluster process has five parameters: the intensity l of the process (which determines the number of
points of the pattern; lA), two parameters j that describe the size of the clusters, and two parameters r that describe
the number of clusters. By indicating the parameters of the larger clusters with subscript 1 and those of the smaller
clusters with subscript 2, the pair-correlation function of this double-clustered process yields

2 2 2 21 exp (�r /4j ) 1 exp (�r /4j )2 sumg(r, j , r , j , r ) p 1 � � , (A4)1 1 2 2 2 2r 4pj r 4pj2 2 1 sum

where (Wiegand et al. 2007a). Clearly, the two scales of clustering can only be separated if small clusters2 2 2j p j � jsum 1 2

are distributed within large clusters, that is, . This is the case in our example, where andj k j j p 8.69 j p1 2 1 2

. On the other hand, if large clusters were distributed within small clusters (i.e., ), then and2.64 j K j j ≈ j1 2 sum 2

equation (A4) approximates the pair-correlation function of the simple Thomas process (eq. [A1]) with intensity
. If the centers of the small clusters are not clustered (i.e., ), equation (A4) collapses to1/r p (1/r � 1/r ) j r �2 1 2

equation (A1), because in this case the process is a simple Thomas process.

Parameter Fitting

For parameter fitting, we followed the minimal-contrast method described, for example, in Stoyan and Stoyan (1994)
and in Diggle (2003). However, as suggested in Wiegand et al. (2007a), we fitted both the g function and the L function
simultaneously. Theoretically, the g and L functions contain the same information, and fitting using g or L should
therefore yield the same parameter estimates. However, in practice we found improved results by fitting both functions
simultaneously. The explanation for this is that the g function is especially sensitive at smaller scales r, but it approaches
the asymptote quickly at larger scales (compared with the way L approaches the asymptote 0). In turn, theg p 1
accumulative L function is not very sensitive at small scales, but it is sensitive at larger scales. When optimizing both,
the g and L functions produce, in general, more balanced fits than when using only the L function.

We first calculated the discrepancy between the model and the data separately for the g function (error g) and the
L function (error L), and we minimized their geometric mean (error Lg):

2rmax c cˆ� L(r) � L(r, j, r)( )rpr0

error L p ,2rmax cˆ� L(r)( )rpr0

2rmax c cˆ� g(r) � g(r, j, r)( )rpr0

error g p ,2rmax cˆ� g(r)( )rpr0

�error Lg p error g # error L, (A5)

with tuning constants r0, rmax, and c. The constant r0 is the minimal scale of the fit, rmax is the maximal scale of the
fit, and c is a power transformation. The error functions error g and error L give the fraction of the total sum of
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squares of the transformed empirical g function and L function, respectively, which is not explained by the model. To
fit the parameters, we minimize the average contrast error Lg of the g and L functions (eq. [A5]).

An immediate question is how to choose appropriate values for the tuning constants r0, rmax, and c. A power
transformation with weights larger values of L(r) or g(r) more than one with , whereas a transformationc 1 1 c p 1
with weights larger differences less. We use in all analyses a power transformation with for the L functionc ! 1 c p 1
and one with for the g function to reduce the high sensitivity of the g function to smaller scales.c p 0.5

If we aim to fit the large-scale component of a double-cluster process (i.e., the parameters j1 and r1 in eq. [A4])
using a Thomas process, comparison of the fitted Thomas process with the empirical pair-correlation function provides,
in general, clear indications about the selection of r0 if the critical scales of clustering are well separated (fig. A3d).
The best approach, however, is to try several values for r0 and visualize the g and L functions of the data and the fit.
In our experience, it was not necessary to use minimal-contrast methods for determination of r0.

A potential problem when using the L function for parameter estimation is that the accumulative L function has a
memory (fig. A3a, A3c ; Wiegand and Moloney 2004). The problem arises when fitting a Thomas process to a point
pattern that shows an additional small-scale clustering. In this case, the observed values of the accumulative L function
are influenced by this small-scale clustering, even for scales larger than the range of the small-scale clustering. This is
illustrated in figure A3. The pair-correlation function, which is not affected by the memory, shows that the range of
small-scale clustering is approximately 8 m (fig. A3d). This small-scale clustering makes the L function initially steeper
than the L function of a Thomas process with only one critical scale of clustering (fig. A3a). As a consequence, the
fit of a double-cluster L function with a Thomas process remains unsatisfactory, even when fitted only for scales larger
than the range of small-scale clustering (i.e., m; fig. A3c). Note that the fit with the pair-correlation functionr p 8– 50
for scale of 8–50 m produces satisfactory results (fig. A3d). This is because the pair-correlation function is not
accumulative. Thus, fitting the Thomas process with the L function to a pattern that shows two critical scales of
clustering produces biased estimates of the parameters of the cluster process (Stoyan and Stoyan 1996) and leads to
the observation that the parameter estimates depend, with sensitivity, on the upper limit rmax to which the K function
is fitted (e.g., Batista and Maguire 1998; Plotkin et al. 2000).

To overcome this limitation, Wiegand et al. (2007a) developed a transformation of the K function that removes the
memory. This transformation makes the value of the theoretical K function at r0 equal to the observed value (i.e., it
removes any memory; fig. A3e, circle). The transformed K function yields

K (r, r ≥ r ) p K � K(r ) � K(r), (A6)t 0 0 0

where K0 is the observed value at scale r0 (i.e., ) and K(r0) is the theoretical value of the common K functionK̂(r ) p K0 0

at scale r0. We calculated the L function in the fitting procedure on the basis of the transformed K function instead
of the common K(r) function, which shows memory effects.

Separation of the scales of clustering (i.e., in eq. [A4]) suggests a convenient approach to fitting the four2 2j k j1 2

parameters of the double-cluster process. In a first step, we fitted the parameters and r1 of the overall larger-scale2jsum

clustering using a Thomas process (eq. [A1]), but we fitted only for scales r that were larger than the range of the
small-scale clustering (fig. A3d, A3f ). We assessed the range of the small-scale clustering by comparing the plots of
the estimated pair-correlation function and the fitted pair-correlation function (fig. A3d). In the second step, we used
the estimates of and r1 and fitted the two unknown parameters and r2 of the small-scale clustering using the2 2j jsum 2

full double-cluster model over the entire range of scales.

Decomposition of a Pattern into a Double-Cluster Component and a Random Component

The pair-correlation function of the double-cluster process (eq. [2]) and the double-cluster–random superposition
process (eq. [4]) have the same functional form and therefore cannot be distinguished on the basis of the pair-
correlation function alone. However, the distribution function of the nearest-neighbor distances reveals differences,
because most points of a double-cluster pattern will have their nearest neighbor close by (i.e., within the same small-
scale or large-scale cluster), whereas most points of the random-component pattern of a superposition pattern will be
isolated, without their nearest neighbors being close by. The basic idea of the separation is therefore to determine
isolated recruits that might belong to the random-component pattern.

To separate isolated points from clustered points, we first calculated the distance to the nearest neighbor for each
recruit of a given recruitment generation (considering only recruits from the same census). Next we consulted the
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distribution of nearest-neighbor distances D(y) expected under a pure double-cluster process (i.e., the gray line and
the simulation envelopes in fig. 2A) for an initial estimate of a suitable separation distance. All recruits without
neighbors within the separation distance were assigned to the tentative random-component pattern. Note that this is
not a perfect decomposition because some recruits of the random-component pattern may accidentally be located
within a cluster and thus be unable to be detected. After determining for each census the two tentative component
patterns, we joined the tentative component patterns of the different censuses in one tentative double-cluster pattern
and one tentative random pattern. By analyzing the joined patterns, we therefore analyzed the spatial structure of all
recruits within the 25 years covered by the censuses. However, when possible, we also analyzed the data sets of individual
censuses to explore temporal effects. An interesting question that may shed light on the drivers of recruitment is
whether subsequent recruitment generations are spatially independent or have a tendency to occur at the same places
(see app. B).

Next we tested whether the tentative random-component pattern was, in good approximation, a random pattern,
and whether the two tentative component patterns were, in good approximation, independent. If the initial separation
distance was too small, some recruits that are actually members of the same cluster would be assigned to the random
component. In this case, the tentative random pattern may show some clustering at smaller scales and the two component
patterns will show attraction. On the other hand, if the separation distance was too large, the distribution function
D(y) of the nearest neighbor distances of the double-clustered component pattern would not fit well. We therefore
tested several separation distances to find the best balance among these criteria.

When a reasonable separation distance was determined, we explored whether the double-cluster component can
indeed be described with the double-cluster process, and we fitted equation (2) to the data. We then compared the
parameter estimates of the double-cluster component pattern with those of the original noncomposed pattern: the
estimates of j should be the same, and the parameters r of the double-cluster component pattern should yield r p

, where r∗ is the corresponding fit for the original nondecomposed pattern and pC is the proportion of recruits∗ 2r pC

that belong to the clustered component pattern. Thus, our methodology provides five tests to assess whether the
original pattern was a superposition of a random pattern and a pure double-cluster pattern: (1) the component pattern
of isolated points should follow CSR, (2) the component of the clustered points should follow a double-cluster process,
(3) the two component patterns should be independent, (4) the fitted values of the cluster sizes j are the same, and
(5) .∗ 2r p r pC
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Figure A1: Example of the construction of cluster processes with one and two critical scales of clustering. a, Sixty-eight large clusters are randomly
distributed over a 50-ha study area; the size of the gray disk corresponds to the approximate size of the clusters. b, Test with the pair-correlation
function showing that the pattern of the cluster centers (dots) is indeed a random pattern. Shown here is the pair-correlation function of the pattern
shown in a (dots), simulation envelopes (black solid lines) representing the fifth-lowest and -highest values of the pair-correlation function of 199
simulations of complete spatial randomness (CSR), and the expectation of the pair-correlation function (solid horizontal line). c, Point pattern
generated with a Thomas process, where 144 points are randomly distributed over 68 clusters with parameter m. Note that some clustersj p 6.5
are empty. d, Pair-correlation function (dots) of the point pattern shown in c, simulation envelopes (black solid lines) indicating the fifth-lowest and
-highest values of the pair-correlation function of 199 simulations of the underlying Thomas process, and the expected pair-correlation function
(gray solid line). The inset in d shows the distribution of the number of points per cluster (bars p data; line p expected). e, Part of a point pattern
generated with a double-cluster process, where the points of the pattern shown in c become small clusters with parameter m and wherej p 2.7
1,160 points are randomly distributed over 144 small clusters. f, Same as d, but for the pattern shown in e.
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Figure A2: Dependence of the number of points per cluster on m, the average number of points per cluster. Note that empty clusters may be
frequent if .m ! 2

Figure A3: Memory of the accumulative L function may cause problems when fitting a Thomas process to point patterns with additional small-
scale effects. a, Fit of a pattern generated by a double-cluster process with the Thomas process using the L function. The fit is not satisfactory. Dots
indicate the observed L function; the line indicates the L function of the best fit with the Thomas process fitted for scale 0–50 m. b, Same as a,
but using the pair-correlation function. c, Same as a, but fitted for scale 8–50 m. The fit is not satisfactory. d, Same as c, but with pair-correlation
function. The fit is satisfactory. e, Fit for scales 8–50 m with transformed L function that removes the memory. The fit is satisfactory. f, Best fit
minimizing the contrast for the L function and the g function simultaneously. The fit is satisfactory.
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APPENDIX B

Detailed Description of the Analyses and Analysis of Recruitment Data from Different Censuses

Detailed Description of Analysis of Cecropia insignis

The pair-correlation function, which measures the neighborhood density of recruits relative to the density expected
under a random pattern, reveals that the total C. insignis recruitment accumulated during the five census periods was
highly aggregated (fig. 2). The density of recruits within 1 m of an average recruit was 50 times that expected by a
random distribution (i.e., ; fig. 2A), and neighborhood densities were elevated for distances of up to 40g(r p 0) ≈ 50
m (i.e., for m). The pair-correlation function can be fitted well with a double-cluster process: theg(r) 1 0 r ! 40
observed pair-correlation function is within the simulation envelopes (fig. 2A), and the goodness-of-fit test for scales

m yielded a rank of 189 (table B1), indicating no significant departure between the fitted model and ther p 1– 50
data. The critical scale of large-scale clustering yields m, and that of small-scale clustering yieldsr p 17.2 r pC1 C2

m. An average large cluster contained 2.2 small clusters (i.e., ), and an average small cluster contained5.3 r /r p 2.22 1

7 recruits (table 2).
The distribution function D(y) of the distances y to the nearest neighbor, however, clearly showed that the pattern

cannot be described by a pure double-cluster process (fig. 2A, inset), because in this case most recruits would have
their nearest neighbor within the same small cluster (i.e., within distances m). The observed D(y) shows that ay ! 5
substantial proportion of recruits had their nearest neighbor at distances y that were much larger than expected under
this null model (i.e., the observed D(y) is substantially below the expected D(y)).

We therefore tested whether the pattern of recruits was a double-cluster–random superposition. To this end, we
decomposed the original pattern of each recruitment generation of C. insignis into two components (see app. A): a
“cluster component” pattern containing those recruits that had their nearest neighbor at distances smaller than a given
separation distance (fig. 2B), and an “isolated component” pattern containing the rest, those recruits that had no
nearest neighbor within the separation distance (fig. 2E). A distance of 8 m yielded the best separation. Eighty-six
percent of the recruits (1,206 individuals) belonged to the cluster component pattern, and 14% (200 recruits) belonged
to the isolated component pattern (table 2). Analysis of the cluster component pattern with the double-cluster process
(eq. [2]) showed that the clustered recruit pattern can be fitted well with this process, except for some additional
clustering at small scales m (fig. 2D; table 2); the goodness-of-fit test for scales m yielded a rank ofr ! 2 r p 1– 50
178. The best fit with the double-cluster process (eq. [2]) yielded critical scales of clustering of m andr p 16.6C1

m, as well as 69 and 147 large and small clusters, respectively. Thus, an average large cluster of C. insignisr p 5.3C2

contained 18 recruits that were distributed on average into two small clusters with approximately 8 recruits (table 2).
Comparing the estimates of the parameters r∗ of the fit of the nondecomposed pattern with the parameters r of

the cluster component showed that the process is likely to be a double-cluster–random superposition. We found that
and , which are in excellent agreement with the expectation∗ 0.5 0.5 ∗ 0.5 0.5(r /r ) p (69/88) p 0.88 (r /r ) p (147/197) p 0.861 1 2 2

of (table 2). We also found that the empirical distribution function of distances to the nearest neighborp p 0.86C

approximated the expectation under the null model reasonably well (see fig. 2D, inset; fig. 2A). The next step was to
test whether the isolated component pattern could be approximated by a random pattern and whether it was independent
from the clustered component pattern. Figure 2F shows that component pattern 2 was, in good approximation, a
random pattern (rank, 192; 0–50 m), and the inset in figure 2F confirms that the two component patterns were
independent (rank, 120; 0–50 m).

Separate analysis of the pooled 1985, 1990, and 1995 recruitment generations and the 2000 and the 2005 recruitment
generations (fig. B1) provided additional interesting insight (the number of recruits during the first three censuses was
too low to be analyzed separately). Recruitment during the 1985–1995 period was relatively low (some 100 recruits
per census), but it increased strongly in 2000 and 2005 to 407 and 692 recruits per census, respectively. The proportion
of isolated recruits was high during the 1985–1995 periods (31%), but it decreased to 6% and 12% for the 2000 and
2005 censuses, respectively (table 2). We found that the clustered component patterns followed double-cluster processes,
with approximately two small clusters within one large cluster and critical scales of clustering that were practically
identical for all recruitment generations (table 2). Interestingly, the clustered component patterns of different periods
were independent (fig. B2), and the sum of the estimated numbers of large clusters (26, 14, and 34 for the first, second,
and third period, respectively; table 2) approximates the number of clusters of the joined clustered component pattern
well (69; table 2). Thus, the clusters of C. insignis were temporally and spatially independent.
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Detailed Description of Analysis of Cordia bicolor

The pair-correlation function reveals that the 125 years of accumulated recruitment of C. bicolor was highly aggregated.
The density of recruits within distances of !1 m was, at the western and eastern subplots, 15 and 40 times that expected
by a random distribution (fig. 3A, 3C), respectively. The pair-correlation functions of the recruit patterns could be
fitted well with a double-cluster process: the observed pair-correlation function is within the simulation envelopes (fig.
3A) and the goodness-of-fit test for scales yielded for the western and eastern subplots ranks of 125 andr p 1– 50
171 (table B1), respectively, indicating no significant departure between the fitted model and the data. The fitted
parameters are shown in table 2: the critical scale of the large-scale clustering yields for the western and eastern subplots

m and 21.5 m, respectively, and that of small-scale clustering m, and an average large cluster atr p 20.0 r p 2.7C1 C2

the western and eastern subplots contained approximately 10 and three small clusters (i.e., ; table 2), respectively.r /r2 1

The distribution function D(y) of the distances y to the nearest neighbor, however, clearly showed that the patterns
cannot be described by a pure double-cluster process (fig. 3A, 3C, inset) because the observed D(y) is below the
expected D(y). This suggests that the pattern of C. bicolor may be a superposition pattern. We therefore tested whether
the pattern of recruits was a double-cluster–random superposition. A separation distance of 16 m yielded the best
separation for both subplots.

Western subplot: At the western subplot there were 531 trees in the cluster-component pattern and 164 trees (24%)
in the isolated-component pattern (table 2), yielding . Analysis of the cluster-component pattern with thep p 0.76C

double-cluster process (eq. [2]) showed that this pattern can be fitted well with this process (fig. 3D ; table 2); the
goodness-of-fit test for scales yielded a rank of 71. The best fit with the double-cluster process (eq. [2])r p 1– 50
yielded cluster sizes of m and m, and about 54 and 531 large and small clusters, respectively.r p 20.0 r p 2.6C1 C2

Thus, an average large cluster of Cecropia insignis contained recruits that were distributed on average intom p 9.81

small clusters containing on average one recruit (table 2). Comparing the estimates of parameters r withr /r p 9.82 1

the number of clusters (where r∗ indicates the estimates of the nonseparated pattern) allowed us to test whether the
process is likely to be a double-cluster–random superposition. We found ( and∗ 0.5 0.5r /r ) p (54/90) p 0.781 1

( , which is in excellent agreement with the expectation . We also found that∗ 0.5 0.5r /r ) p (531/920) p 0.76 p p 0.762 2 C

the empirical distribution function of distances to the nearest neighbor approximated the expectation under the null
model reasonably well (see fig. 3D, inset; fig. 3A).

Eastern subplot: At the eastern subplot there were 113 trees in the cluster-component pattern and 96 trees (46%)
in the isolated-component pattern (table 2), yielding . Analysis of the cluster-component pattern with thep p 0.54C

double-cluster process (eq. [2]) showed that this pattern can be fitted well with this process (fig. 3F; table 2); the
goodness-of-fit test for scales yielded a rank of 144. The best fit with the double-cluster process (eq. [2])r p 1– 50
yielded cluster sizes of m and m and about 26 and 80 large and small clusters, respectively. Thus,r p 20.0 r p 2.8C1 C2

an average large cluster of C. insignis contained recruits that were distributed on average intom p 4.4 r /r p 3.11 2 1

small clusters containing on average 1.4 recruits (table 2). We found and∗ 0.5 0.5 ∗ 0.5(r /r ) p (26/69) p 0.61 (r /r ) p1 1 2 2

, which is in excellent agreement with the expectation . We also found that the empirical0.5(80/283) p 0.53 p p 0.54C

distribution function of distances to the nearest neighbor approximated the expectation under the null model reasonably
well (see fig. 3F, inset; fig. 3C).

The next step was to test whether the isolated recruit-component pattern could be approximated by a random
pattern as assumed by the double-cluster–random superposition process and whether it was independent from the
clustered-component pattern. Figure 3G, 3I shows that component patterns 2 were, in good approximation for both
subplots, a random pattern, and that the insets in figure 3G, 3I show that the two component patterns were, in good
approximation for both subplots, independent.

Interestingly, the random-component patterns from the two subplots formed one (homogeneous) random pattern
(fig. 3H; the rank of the goodness-of-fit test for complete spatial randomness taken over scales m yieldedr p 0– 50
175 for the g function and 150 for the D function). However, the average number of recruits per large cluster (m1)
was twice as large at the western subplot than at the eastern subplot (table 2).
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Figure B1: Detailed analysis of the data of Cecropia insignis recruitment from different censuses. We pooled the data from the 1985, 1990, and 1995
censuses because of the low numbers of recruits. a, c, and e show the double-clustered component pattern (all recruits that had their nearest same-
generation neighbor within 8 m) for the 1985�1990�1995, 2000, and 2005 censuses, respectively. b, Pair-correlation function (dots), simulation
envelopes (black solid lines) indicating the fifth-lowest and -highest values of the pair-correlation function of 199 simulations of the fitted double-cluster
process (eq. [2]), and the fitted double-cluster pair-correlation function (gray solid line). The inset shows the empirical distribution D(y) of the
nearest-neighbor (NN) distances y (dots), the expected function of the null model (gray solid line), and the simulation envelopes (black solid lines).
Note the logarithmic scale of the Y-axis. d, f, same as b, but for the 2000 and 2005 recruitment generations, respectively. D(y) p cumulative
distribution function of the distances y to the nearest neighbor.
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Figure B2: Test of independence of the double-cluster components of different Cecropia insignis recruitment generations (shown in fig. B1). a,
Independence of the combined 1985�1990�1995 and the 2000 generations. b, Independence of the 2000 and 2005 generations. The pair-correlation
function (dots) and simulation envelopes (black solid lines), which indicate the fifth-lowest and -highest values of the pair-correlation function of
199 simulations of the toroidal-shift null model testing for independence. The insets show the empirical distribution D12(y) of the nearest-neighbor
(NN) distances y (dots), the expected function under the null model (gray solid line), and the simulation envelopes (black solid lines).
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Figure B3: Detailed analysis of the cluster structure of different Cordia bicolor recruitment generations. We pooled the data from the 1995, 2000,
and 2005 censuses because of the low numbers of recruits, and we performed the 1985 and 1990 census analyses separately for the western and
eastern subplots. a, c, and e show the double-clustered component pattern (all recruits that had their same-generation nearest neighbor within 16
m) for the 1985, 1990, and combined 1995�2000�2005 censuses, respectively. b, Results for the western subplot of a. Note the logarithmic scale
of the Y-axis. d, f, same as b, but for the 1990 and combined 1995�2000�2005 recruitment generations, respectively. h, Analysis of component
pattern 2 with the complete spatial randomness null model. The inset shows the test of independence between the two component patterns. Other
conventions are as they are in figure B1.
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Figure B4: Test of independence of the double-cluster components of subsequent Cordia bicolor recruitment generations (shown in fig. B3). a,
Independence of the 1985 and 1990 generations; b, independence of the 1990 and 1995 generations; and c, independence of the 1995 and combined
2000�2005 generations. Other conventions are as they are in figure B2.
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Figure B5: Detailed analysis of the cluster structure of different Miconia argentea recruitment generations. a, c, e, g, and i show the double-clustered
component pattern (all recruits that had their same-generation nearest neighbor within 12 m) for the 1985, 1990, 1995, 2000, and 2005 censuses,
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respectively. b, d, f, h, and j show the results for the patterns shown in panels a, c, e, g, and i, respectively. Note the logarithmic scale of the Y-axes.
Other conventions are as they are in figure B1.

Figure B6: Test of independence of the pattern of subsequent Miconia argentea recruitment generations (as shown in fig. B5). Other conventions
are as they are in figure B2.
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Figure B7: Relationship between the clustered-component patterns of recruits and the corresponding pattern of reproductive trees. We contrasted
the observed functions g12(r) and D12(y) to approximate 95% simulation envelopes constructed from 199 simulations of the toroidal shift null model,
where the adults were moved relative to the recruits pattern. The main figures show the results of the analysis with the pair-correlation function
g12(r), and the insets show the cumulative distribution function D12(y) of the distances y of the recruits to the nearest adult. The dots show the
observed functions, the solid gray line shows the expectation under the null model, and the solid black lines show the simulation envelopes. The
vertical lines in c show the critical scales of clustering (table 2).
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Table B1: Rank and range of scales used for the goodness-of-fit test for the different analyses

Species, component Scale (m) Rank g(r) Scale s (m) Rank D(r) Figure

Cecropia insignis, all censuses:
All recruits 1–50 189 1–50 200 2A
Cluster 1–50 178 1–50 200 2D
Isolated CSR 0–50 192 0–50 200 2F
Independence 0–50 120 0–50 200 2F, inset

C. insignis, single census:
1985�1990�1995 cluster 0–50 150 0–50 197 B1b
2000 cluster 0–50 168 0–50 200 B1d
2005 cluster 1–50 182 1–50 192 B1f

Cordia bicolor western, all censuses:
All recruits 0–50 95 0–50 200 3A
Cluster component 0–50 35 0–50 200 3D
Isolated CSR 0–50 187 0–50 187 3G
Independence 0–50 100 0–50 194 3G, inset

C. bicolor eastern, all censuses:
All recruits 0–50 136 0–50 200 3C
Cluster 0–50 107 0–50 199 3F
Isolated CSR 0–50 10 0–50 192 3I
Independence 0–50 161 0–50 96 3I, inset

C. bicolor all, all censuses:
Isolated CSR 0–50 175 0–50 150 3H

C. bicolor western, single census
1985 cluster 0–50 32 0–50 195 B3b
1990 cluster 0–50 51 0–50 191 B3d
1995�2000�2005 cluster 0–50 6 … 124 …

C. bicolor entire plot 1995�2000�2005:
Cluster … 70 … 199 B3f
Isolated CSR 0–50 59 0–50 66 B3h, inset
Independence 0–50 143 0–50 97 B3h

Miconia argentea, all censuses:
All recruits 1–20 144 0–50 200 4A
Cluster 1–20 192 0–50 200 4D
Isolated CSR 0–50 178 0–50 110 4F
Independence 0–50 200 0–50 196 4F, inset

M. argentea, single census:
1985 cluster 0–50 182 0–50 200 B5b
1990 cluster 1–50 141 0–50 200 B5d
1995 cluster 0–50 135 0–50 199 B5f
2000 cluster 1–50 118 0–50 200 B5h
2005 cluster 0–50 71 0–50 199 B5j

Hasseltia floribunda, all censuses 1–50 2 0–50 198 5A
Randia armata, all censuses 0–50 9 0–50 18 5C

Note: CSR p complete spatial randomness.

Table B2: Rank of goodness-of-fit test for the different analyses regarding indepen-
dence of the recruit pattern of subsequent censuses

Species, census pattern 1 Census pattern 2 Rank g12(r) Rank D12(r) Figure

Cecropia insignis:
1985–1995 2000 5 7 B2a
2000 2005 44 74 B2b

Cordia bicolor western:
1985 1990 183 152 B4a
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Table B2 (Continued)

Species, census pattern 1 Census pattern 2 Rank g12(r) Rank D12(r) Figure

1990 1995 200 200 B4b
1995 2000 � 2005 0 74 B4b

Miconia argentea:
1985 1990 200 200 B6a
1990 1995 197 194 B6b
1995 2000 199 199 B6c
2000 2005 196 195 B6d

Note: The test interval of the goodness-of-fit test was 0–50 m in all cases.

Table B3: Rank and range of the goodness-of-fit test for the
different analyses regarding independence of the recruit pat-
tern and the pattern of reproductive trees

Species Rank g12(r) Rank D12(r) Figure

Cecropia insignis 173 200 B7a
Cordia bicolor western 162 124 B7b
Hasseltia floribunda 200 200 B7c
Miconia argentea 195 200 B7d
Randia armata 179 176 B7e

APPENDIX C

Combining the Data from Individual Mapped Replicate Plots into Mean Weighted Test Statistics

The data on the bivariate adult-recruit patterns from different censuses are statistics replicates that are created by the
same underlying process. To summarize the data in an effective way, we can combine the test statistics of individual
censuses into average second-order statistics (Diggle 2003; Illian et al. 2008). Because the pair-correlation function (as
well as the K function) is itself defined as a ratio, , a good strategy is to separately pool estimates of lg(r) p O(r)/l
and (Diggle 2003, p. 123).O(r) p lg(r)

As such, we first developed the weighted estimators of the O-ring statistic O12(r) and the intensity l2 of pattern 2,
and then we used the relation to estimate the pair-correlation function g12(r). Using the grid-basedO (r) p l g (r)12 2 12

estimators of Programita and following the notation in Wiegand and Moloney (2004; their eq. [11]), the numerical
estimator of the bivariate O-ring statistic O12(r) is calculated as

n1 w(1/n ) � Points (R (r))1 2 1, iip1
wÔ (r) p , (C1)12 n1 w(1/n ) � Area(R (r))1 1, iip1

where n1 is the number of points of pattern 1, is the ring with radius r and width w centered in the ith pointwR (r)1, i

of pattern 1, Points2(x) counts the points of pattern 2 in a region x, and the operator Area(x) determines the area of
the region x.

To integrate the data of M different replicates into a single weighted O-ring statistic, the formula for one replicate
(eq. [C1]) is extended by calculating, for each spatial scale r, the average weighted number of points of pattern 2 taken
over all M replicates and the average weighted area taken over all M replicates:

1 Mn n1 11 1 w M M w…n /N 1/n � Points R (r) � � n /N 1/n � Points R (r)1 M{( )[( ) ( )] ( )[( ) ( )]}1 M1 1 2 1, i 1 1 2 1, ii p1 i p1
wÔ (r) p , (C2)1 M12 n n1 11 1 w M M w…n /N 1/n � Area R (r) � � n /N 1/n � Area R (r)1 M{( )[( ) ( )] ( )[( ) ( )]}1 M1 1 1, i 1 1 1, ii p1 i p11
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where i j is the ith point of pattern 1 and replicate j, is the number of points of pattern 1 and replicate j, andjn1

is the total number of points of pattern 1 in all replicates. Equation (C2) simplifies tojN p � n1j

1 Mn n1 1w w…� Points R (r) � �� Points (R (r))1 M( )1 M2 1, i 2 1, ii p1 i p1
wÔ (r) p . (C3)1 M12 n n1 1w w…� Area R (r) � �� Area(R (r))1 M( )1 M1, i 1, ii p1 i p11

We estimate the overall intensity l2 as

M j� n 2jp1

l p , (C4)2 M j� Ajp1

where Aj is the area of replicate j. The estimator of the single weighted pair-correlation function is then given as

1
w wˆĝ (r) p O (r). (C5)12 12

l 2

APPENDIX D

Species Properties versus Cluster Characteristics

Table D1: Rank correlations between species properties and model parameters for fits of data of individual census periods (table
2)

Species property Growth Light Dispersal Weight pC m1 m2 j1 j2 r2/r1 j1/j2

eff a .90* 1.00** �.10 �.70 �.56 .90* 1.00** �.70 .10 �.70 �1.00**
Maximum sapling

growthb … .90* �.20 �.40 �.35 .63* .64* �.03 .25 �.37 �.60*
Light sensitivityb … … �.10 �.70 �.12 .88** .94** �.40 .41 �.78** �.93**
Mean dispersal

distanceb … … … .40 �.28 �.18 �.18 �.61* �.70** .23 .20
Seed weightb … … … … �.21 �.73** �.84** .19 �.62* .83** .86**
pC

c … … … … … .07 �.04 .58* .32 .1 .24
m1

c … … … … … … .90** �.21 .2 �.48 �.75**
m2

c … … … … … … … �.36 .37 �.75** �.85**
j1

c … … … … … … … … .32 .36 .54
j2

c … … … … … … … … … �.58* �.45
r2/r1

c … … … … … … … … … … .80**

Note: pC p proportion of recruits in the cluster-component pattern. m1 and m2 are the average numbers of trees in one large-scale and one small-scale

cluster, respectively; 2j1 and 2j2 are the cluster sizes of the large and small clusters, respectively; and is the average number of small clusters in oner /r2 1

large cluster.
a Index eff is a crude measure of dispersal quantity calculated as the number of defecations containing at least one seed of a particular tree species divided

by the number of adults of that tree species in the Barro Colorado Island plot, based on data published in table 1 in Wehncke et al. (2003). Because the data

on defecations were collected in 1999, we related eff-only cluster characteristics of the 2005 census.
b See table 1.
c See table 2.

* .P ! .05

** .P ! .01
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