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Introduction
Partitioning variation for identifying relative importance of 

different ecological processes are ubiquitous in current ecological 
literature. Especially in the discipline of community ecology, variation 
partitioning has been widely applied to reveal the influences of dispersal 
limitation and environmental filtering.

One common assumption in analyzing ecological communities 
is that scale of the data is fixed without change. This might lead to 
problems as different species might respond differently to the spatial 
resolutions due to various dispersal abilities or niche processes 
operating at different scales. Thus, it might be misleading to apply a fixed 
spatial resolution to evaluate the influences of environment and space 
on species distribution or community structure. As stated by Karst et 
al. [1], “the balance of stochastic and deterministic factors influencing 
plant distributions depends on spatial resolution”. Therefore, ignorance 
of spatial resolution transformation inherent in the raw data may pose 
risks of misunderstanding on the various effects of ecological processes.

To explicitly resolve the spatial invariance issue, in the present 
study I am trying to quantify the effects of dispersal limitation on 
compositional variation of the community using a multiscale procedure. 
Since the multiscale method is highly flexible and compatible with 
traditional fixed-scale methods, this procedure might allow more 
information to be extracted regarding the effects of dispersal limitation 
and environmental filtering.

Rare species have unique roles contributing to community diversity 
[2]. They are also important to identify conservation priorities [3], 
evaluate extinction risks and serve as flagship species in the local 
communities [4].

However, it is still unclear how rarity would influence resulting 
variation contributed by spatial autocorrelation. The common 
hypothesis should be that rare species typically has limited distributional 
range and thus should be determined by space or limited habitats. Thus, 
if there are a lot of rare species in the community, I would predict that 

the proportion of total variation (indicated by adjusted 2R ) explained 
by space should be remarkably large.

Aggregation of species distributions is ubiquitous in ecological 
data [5-8]. Many studies have attempted to estimate the degree of 
aggregation and evaluate the consequences of aggregation on the 
species-area relationship [9,10] and abundance estimation [11]. 

To date, no study has dealt with the impacts of species aggregations 
on the explained variations contributed by space. One hypothesis for 
linking species aggregation and variation partitioning for space could 
be that increasing spatial aggregation would lead to a higher percentage 
of explained variation attributed to space because aggregated species 
should be spatially limited in their distributional ranges (Of course, 
increasing spatial aggregation may lead to higher percentage of 
explained variation attributed to environment when the environment 
or habitats are spatially structured, in this case, the role of space and 
environment cannot be distinguished because environment interplays 
with space). Typically, when the spatial resolutions are increasing, 
the species’ distribution should appear more aggregated (because 
distribution points at adjacent cells are merged gradually). Thus, I 
predict that explained variation contributed by space should increase 
when spatial resolutions are increasing for the community.

In the present study, I have three research objectives for better 
understanding the contributions of space and environment on 
structuring ecological communities: (1) the shifting pattern of explained 
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Abstract
Spatial autocorrelation is one of the most important ecological processes discussed in current ecological literature. 

The present study represents an attempt to quantify the effect of dispersal limitation on community structure under a 
local environmental condition using a multiscale approach. Moreover, I assess the relationships between explained 
variation accounted for by space, rarity, and the distributional aggregation of species in the community. My results 
showed that spatial autocorrelation would have increasing influences on community composition when the spatial 
resolutions were increased for the 50-ha tree plots of Barro Colorado Island (BCI), Panama Canal. Also, when spatial 
resolutions were increasing, the rarity of species tended to decrease as measured as an intrinsic characteristic 
of the species regarding its distribution (monotonically), while the aggregation of species tended to increase (not 
monotonically). Overall, it might be of some values to perform such multiscale analyses for analyzing the relative 
contribution of space and environment on shaping community structure and species distribution dynamically.
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variation attributed to spatial autocorrelation caused by the rescaling 
of the data; (2) the relationship between explained variation and the 
rarity of species in the community; and (3) the relationship between 
explained variation and the aggregation of species in the community.

Materials and Methods
Multiscale procedure

The multiscale technique is nothing new, but simply to modify 
the areal size (merge or split different local quadrates to form new 
quadrates with new areal sizes and spatial scales) and spatial coordinates 
(recalculation of the geographic coordinate centroids of these newly 
formed quadrates) of the sampling quadrates according to different 
spatial scales. The generated new quadrates in each step of the rescaling 
procedure are then operated using Redundancy Analysis (RDA) and/or 
Canonical Correspondence Analysis (CCA) to evaluate the explained 
variation contributed by space. The calculation of explained variation 
contributed by space follows the previous studies using variation 
partitioning technique [12-15]. In a simple sense, the method is to 
implement a multivariate regression analysis on the species community 
matrix (quadrate-species matrix) using the geographic coordinate 
centroids of the quadrates as the explanatory variables.

In the present study, the rescaled procedure is run in a manner 
from high to low spatial resolutions. Specifically, the original data set 
is considered to have the highest spatial resolution, in which the whole 
studied region is divided into regular quadrates, and the areal size of 
the smallest spatial unit is calculated (Scale 1 subplot in Figure 1). The 
selection of regular quadrates is for satisfying the requirement that all 
the studied quadrates could cover the distributional points of at least 
one species. 

Then, I merge every two adjacent quadrates from the original 
grid cell system to form new sampling quadrates with a lower spatial 
resolution (Scales 2, 4 and 8 subplots in Figure 1), in which the 
abundance of the species is summed and the environmental data are 
averaged. The outcome of this rescaling step is that the size of smallest 
spatial unit of the data becomes twofold larger than the previous 
unscaled data. The procedure continues until the size of the smallest 
unit of the distribution data becomes 1/5 of the total area size (Figure 
1).

Extraction of spatial variables

 I consider two methods to quantify and extract spatial information 
contained in the data so as to use them as explanatory variables when 
performing RDA (or CCA) analyses. The first method is called as 
principal coordinates of neighbor matrices [16], while the second one 
is a cubic regression model, written as

 2 2 3 3
1 2 3 4 5 1 2...y b X b Y b X b XY b Y b X b Y= + + + + + + +                       [1,13,17] 

where X  and Y  denote the latitude and longitude respectively of 
the geographic coordinate centroids of a newly formed quadrate.

Assessment of the rarity of species

 When the spatial resolutions vary, I am able to quantify the role 
of species rarity on resultant explained variations contributed by space 
and environment, respectively. To quantify the rarity of species in the 
community, I consider that the percentages of species which occur 
(their presence information) in less than 10%, 30% and 50% of the total 
quadrates (R10, R30, R50). 

Assessment of the aggregation of species

 To measure the aggregation of species across the distributional 
ranges, instead of using the negative binomial distribution [7,8,18,19], I 
consider the finite version of negative binomial distribution, which has 
been recommended recently for its merits of handling range-narrow 
species [5].

 The finite negative binomial probability of species distribution 
reads,
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Where m  is the number of quadrates, a  is the ratio between 

Figure 1: The multiscale procedure for analyzing the community structure of Barro Colorado Island (BCI) tree community (40 sampling quadrates).
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R10, R30, R50 is present in Table 1. The results show that there is a 
strong negative relationship between community rarity and explained 
variation for space. This result suggests that when spatial resolutions are 
increasing, the rarity of species has a decreasing trend, while the space 
could explain more percentage of variation within the community 
composition.

Relationship between explained variation accounting 
for space and the aggregation patterns of species in the 
community

Estimation of the aggregation parameter for rare species still 
encounters fitting difficulties here (no convergence), in contrast to 
previous work [5]. I also attempted to fit the aggregation parameter for 
negative binomial distribution, and the results are basically identical. 
Thus, only the result for finite negative binomial distribution is presented 
(Table 1). Basically, the aggregation of species has an increasing trend 
when the smallest grid cell size is increased.

The relationship between explained variation from RDA and the 
aggregation parameter k  is presented in Table 1. The results show that 
when the aggregation of species in the community has an increasing 
trend, the space could explain more percentage of variation within the 
community composition.

Interestingly, results highlight that the effective species number 
(those species can generate reasonable k >0) is not changed under 
multiscaling process. The number is fixed at 150 as shown in Table 
1. Thus, in the increasing scaling procedure, aggregation patterns for 
some species seem invariant. Typically these species should be the ones 
with the associated aggregation parameter k that is difficult to estimate. 
When checking the distribution of each species, most species without 
reasonable estimation of k  are the ones with singular distributions in 
the BCI quadrates. 

Discussion
Aggregation and rarity patterns of species under varying 
spatial resolutions

 Contrary to the prediction mentioned above, increasing spatial 
resolutions does not increase rarity of species. Instead, many species 
become more common when spatial resolutions are increased. A very 
reason for this result might be due to the reduced quadrate number, 
thereby reducing the rarity of species.

 Reducing rarity of the species in a community could better reveal 
spatial or environmental gradients [25]. Thus, it is not surprising in my 
study that the explained variation for space would increase when the 
community rarity is reduced.

Relationships between explained variations accounted for 
space and environment and percentages of rarity of species in 
the community (R10, R30, R50)

Community rarity thus might be an indicator to assess the role 
of spatial autocorrelation. As shown in Table 1, increasing spatial 
resolutions would decrease community rarity indices (R10, R30, R50), 
meanwhile the explained variation attributed to spatial autocorrelation 
is decreased remarkably. There is a tight negative association between 
rarity of species in the community and the explained variation for 
space. Thus, it is rational to use rarity of the community to predict 
the relationship between explained variation for space and the 
compositional variation of the community [26].

smallest spatial unit size and the whole range, { }in  is the abundance 
vector in a set of sampled quadrates. 

I take the average of the aggregation parameter k  for all the species 
to represent the community aggregation status when analyzing the 
relationship between aggregation and rarity of the species community. 

Example: Distribution of 225 tree species in 40 Barro 
Colorado Island (BCI) sampling plots

 The distribution of the tree abundances across the BCI sampling 
plots is derived from a previous study [20]. Originally there are 100 
sampling sites, but I only consider sampling plots with standard square 
design (as those presented in Figure 1). Therefore, the resulting matrix 
is the one with a dimension of 225×40, in which there are 40 sampling 
sites and 225 tree species.

 Spatial variables used for the analysis include the geographic 
coordinates (latitude and longitude) of the sampling plots. 
Environmental variables, including precipitation and elevation, age of 
the plot and the geology, are basically identical across the 40 sampling 
plots, thus indicating an environmentally homogeneous landscape [21-
23]. Thus, these 40 plots allow the contribution of space on influencing 
community structure of trees to be tested, while ignoring environmental 
variability. 

All the analyses are done using R software [24].

Results
Explained variation accounting for space as the function of 
varying spatial resolutions

 Since the results from RDA and CCA are basically the same, and 
the explained variation for space using PCNM method, cubic regression 
model and original geographic coordinates are highly similar, thus 
only the results for RDA with raw coordinates as input are discussed 
hereafter.

As shown in Table 1, increasing the smallest spatial unit for BCI 
data would lead to increasing explained variation attributed to space. 
Thus, when the spatial resolutions are larger, typically the spatial 
distributional range of species is larger. 

Relationship between explained variation accounted for 
space and percentages of rarity of species in the community 
(R10, R30, R50)

Increasing the smallest spatial unit for BCI data would lead to a 
decreasing rarity of species in the community, as indicated by R10, R30, 
and R50 indices (Table 1).

The relationship between explained variation from RDA and the 

Scales R10 R30 R50 k (FNBD) Effective Species Number RDA

1 25.90% 45.90% 64.10% 4.5 149 22.54%
2 19.50% 34.10% 48.20% 7.28 150 33.82%
4 13.20% 26.40% 35.00% 5.5 150 47.42%
8 0.00% 14.10% 23.60% 11.6 150 58.87%

Table 1: Patterns of rarity (R10, R30, R50) and aggregation ( k ) of species in Barro 
Colorado Island (BCI) tree community and explained variation for space using 
RDA when the spatial resolutions rise up (area size of smallest sampling quadrate 
is increasing with the scale parameter). Effective species number indicated the 
species with distributions that can be used for estimating aggregation parameter

k .
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Relationships between explained variation accounted 
for space and the aggregation patterns of species in the 
community

Interestingly, it is found that increasing aggregation of species 
distribution could increase the explained variation caused by space. 
This observation is congruent with my primary prediction. The 
aggregation status of species might reflect the spatial clustering patterns 
of the species in the area. Thus, a higher aggregation of species should 
have a higher clustering probability, leading to a stronger effect of 
spatial autocorrelation. By this manner, the explained variation caused 
by space should increase consequently.

Limitations of the present study

 First, the robustness of the analysis may be challenging because of 
limited data size. In the present study, only 5 quadrates are available as 
the response variable at the largest scale, while only 10 quadrates are 
available at the second largest scale. These small data sizes confine the 
reliability of the corresponding findings.

 Second, rarity and aggregation may not be changed independently 
of spatial resolution. The consequence is that the results are not reliably 
interpreted. This issue should be possible, as indicated by the results 
presented in Table 1: the correlation between these two quantities is 
strong over various spatial resolutions. However, prior knowledge did 
not assume any relationships between rarity and aggregation when 
spatial resolution is changing. Therefore, their non-independent change 
when spatial resolution is varying can be one of the causes but not the 
only cause. In the present study, it is not possible to remove the non-
independent change of both quantities. 

Finally, the empirical study system (BCI tree plots) utilized in the 
present study may be too specific to address the topic on a general 
level. It is situated in a local area, the results may not be generalized 
and applicable to the data of field plots in other regions. This limited 
sampling issue can be avoided if one can explore and compare the 
empirical data in other global permanent forest plots. 
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