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Abstract
Background and Aims Forests play a vital role in regu-
lation of the global carbon cycle. Mechanistically un-
derstanding how their ecosystem functioning relates to
biodiversity is necessary for predicting the conse-
quences of biodiversity loss and for setting conservation

priorities. Here, we test whether carbon stocks in a
subtropical evergreen broad-leaved forest in China are
more strongly influenced by plant functional diversity
(FD), as would be predicted by the ‘niche complemen-
tarity hypothesis’, or by community-weighted mean
(CWM) functional trait values, as would be predicted
by the ‘mass ratio hypothesis’.
Methods Using data from a 24-ha plot subdivided into
400 m2 quadrats, we determined relationships of above-
ground carbon (AGC) and topsoil (1–10 cm) organic
carbon (SOC) to topographic variables, stem density,
CWM and FD of six functional traits hypothesized to
influence carbon stocks.
Results After accounting for topographic variables and tree
stem density, boosted regression tree models revealed that
CWMs were the dominant driving factors for both AGC
and SOC, whereas FD had negligible effects. AGC and
SOC were influenced by different functional traits, with
AGC responding most strongly to CWM values for wood
density and maximum tree height, and SOC responding
most strongly to elevation, indicating that these carbon
stocks are shaped by different underlying mechanisms.
Conclusions Our results support the mass ratio hypoth-
esis but not the niche complementarity hypothesis. Our
study implies that, when it comes to maximizing forest
carbon storage, conservation priorities should focus on
protection of species with traits associated to high car-
bon stocks.
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Introduction

Anthropogenic activities are extirpating species from
large portions of their historical ranges, resulting in
reduced biodiversity over much of Earth’s land area
and rates of species loss estimated to be 1000-fold
greater than natural extinction rates (Sala et al. 2000;
Pimm et al. 2014). Experiments using relatively short-
lived species such as bacteria, fungi, algae, and grasses
have demonstrated that ecosystems with higher biodiver-
sity generally have enhanced ecosystem functioning —
i.e., higher carbon (C) stocks, productivity, or resilience
— and that biodiversity loss could impair ecosystem
functioning (Hooper et al. 2005; Isbell et al. 2011;
Cardinale et al. 2012; Tilman et al. 2014). However, there
remains debate as to how biodiversity affects ecosystem
functioning in more structurally complex natural commu-
nities containing long-lived organisms, including forests
(e.g., Paquette and Messier 2011; Ruiz-Jaen and Potvin
2011; Conti and Díaz 2013; Cavanaugh et al. 2014; Ruiz-
Benito et al. 2014; Finegan et al. 2015; Prado-Junior et al.
2016). Considering the fact that forests cover ~31 % of
the global land area, harbor about two thirds of terrestrial
biodiversity and play a critical role in global C balance
(MEA 2005; FAO 2010), improved understanding of the
relationship between biodiversity and C stocks in natural
forests is critical.

Biodiversity is mechanistically linked to ecosystem
functioning through the functional traits of the species
that comprise the community (Petchey and Gaston
2006; Díaz et al. 2007; Cadotte et al. 2011). Two test-
able, non-mutually exclusive, hypotheses have been put
forward to address the mechanisms that potentially un-
derpin relationships between biodiversity and ecosys-
tem functioning: (i) the mass ratio hypothesis, and (ii)
the niche complementarity hypothesis. The mass ratio
hypothesis posits that ecosystem functioning is deter-
mined predominantly by the functional traits of the
dominant species in a community (Grime 1998;
Mokany et al. 2008). More explicitly, it implies that
community-weighted mean (CWM) functional trait
values can explain significant variation in ecosystem
functioning (Díaz et al. 2007). In forest ecosystems, it
has been reported that trait values associated with higher
wood volume (e.g., higher maximum potential tree
height, Hmax) or higher wood density (WD) lead to
higher biomass C stocks (Bunker et al. 2005; Conti
and Díaz 2013; Finegan et al. 2015; Lin et al. 2015).
Traits associated with high productivity or rapid

biomass turnover — e.g., higher leaf nutrient concen-
trations or specific leaf area (SLA)—may lead to faster
tree growth and higher rates of C input to the soil, but
may also result in shorter C residence times through
higher tree mortality or faster litter decomposition rates
(Garnier et al. 2004; Wright et al. 2010; Freschet et al.
2012).

The niche complementarity hypothesis suggests that
trait functional diversity (FD) positively influences eco-
system functioning (Hooper and Vitousek 1997;
Heemsbergen et al. 2004). The complementarity effect
occurs through niche partitioning (i.e., differences in
resource-use strategies) and/or interspecific interactions
(e.g., facilitation) that allow for more efficient use of
available resources by functionally diverse species as-
semblages (Cardinale et al. 2002; Cardinale 2011).
Higher FD in forests would imply that trees exhibit
greater resource-use complementarity and/or lower
competition among species, leading to greater produc-
tivity. In turn, higher woody productivity would lead to
higher live biomass if not counterbalanced by higher
wood mortality, and higher root productivity or litterfall
would lead to higher soil C if not counterbalanced by
faster decomposition rates. Recently, a number of stud-
ies have examined the role of FD in driving forest
productivity or C stocks, with mixed results (e.g.,
Paquette and Messier 2011; Conti and Díaz 2013;
Ruiz-Benito et al. 2014; Finegan et al. 2015; Prado-
Junior et al. 2016).

To date, most studies on the relationships between
biodiversity and C stocks in forests have been limited to
aboveground C (e.g., Ruiz-Jaen and Potvin 2011;
Cavanaugh et al. 2014; Ruiz-Benito et al. 2014; Finegan
et al. 2015; Prado-Junior et al. 2016). However, forest
soil C stocks can rival or exceed aboveground C stocks
(Fahey et al. 2010), and it is therefore critical to under-
stand the mechanisms through which plant traits influ-
ence soil C. Plant species composition influences soil C
through interspecific variation in litter quality (e.g., de-
composability) and input rates (De Deyn et al. 2008;
Fornara and Tilman 2008; Lange et al. 2015). Plants and
the soil biota that metabolize plant C input interactively
shape the soil C balance, such that plant C input rates do
not necessarily predict soil C stocks (De Deyn et al.
2008; Grigulis et al. 2013; Lange et al. 2015). For
instance, higher C inputs to the litter layer in the form
of increased litterfall or cellulose (in a controlled exper-
iment) can have a Bpriming^ effect that accelerates the
decomposition of soil C, resulting in net soil C loss

436 Plant Soil (2016) 409:435–446



(Fontaine et al. 2004; Sayer et al. 2011). Thus, the
influences of plant functional traits on soil C will be
mediated by soil biota over time scales of decades to
centuries, resulting in complex linkages between tree
functional traits and soil C.

Here, we utilize tree census and soil data from
an old-growth subtropical evergreen broad-leaved
forest in China to understand how CWM and FD
of tree functional traits affects aboveground and
soil C stocks on a 20 m spatial scale. We hypoth-
esize that, after accounting for topographic vari-
ables and stem density, forest C stocks will be
influenced by both CWM and FD of tree function-
al traits. Specifically, we predict positive effects of
CWM of Hmax and WD on aboveground C stock
(AGC), owing to potential greater tree biomass,
and negative effects of CWM leaf nutrient concen-
trations and SLA on soil organic C stock (SOC),
owing to faster litter decomposition rates. With
regards to FD, we expect that quadrats with higher
FD will have higher AGC and SOC, owing to
more efficient utilization of available resources,
thus leading to higher biomass production and
greater litter inputs to the soil. We further hypoth-
esize that CWMs will explain more variation in C
stocks than FD — the mass ratio hypothesis will
be more appropriate than the niche complementar-
ity hypothesis for explaining the variation of C
stocks in this old-growth subtropical forest.

Material and methods

Study site

This study was conducted in a natural evergreen broad-
leaved forest in the Gutianshan National Nature Reserve
in southeast China (29.15° N, 118.07° E). The region
has a subtropical monsoon climate, receiving on average
1964 mm of precipitation annually and with a mean
annual temperature of 15.3 °C. The bedrock of the
mountain range is granite, and the soils are moderately
acidic (pH 5.5–6.5). The reserve covers 8100-ha of
evergreen broad-leaved mixed forest, with Castanopsis
eyrei and Schima superba as dominant tree species (Zhu
et al. 2008; Legendre et al. 2009; Lin et al. 2012). A
permanent forest dynamics plot with an area of 24-ha
(400 × 600 m) belonging to CForBio (www.cfbiodiv.
org/english/) and affiliated with the Center for Tropical

Forest Science-Forest Global Earth Observatory (CTFS-
ForestGEO; www.forestgeo.si.edu) was established in
2005 following CTFS-ForestGEO protocols (Condit
1998), which have been applied at >60 sites globally
(Anderson-Teixeira et al. 2015). Specifically, the plot
was divided into 600 20 × 20 m quadrats and all stems
with diameter at breast height (1.3m height) ≥1 cmwere
mapped, tagged, identified to species and measured
(Zhu et al. 2008). A total of ~140,700 individuals be-
longing to 159 species were recorded in the plot (Zhu
et al. 2008).

Quantifying C stocks

We quantified C stocks in live trees (aboveground
C; AGC) and soil to a depth of 10 cm (soil
organic C; SOC) for the entire 24-ha plot. Above-
ground biomass was estimated based on tree cen-
sus data in combination with 14 species-specific
allometric equations (covering ~80 % of total basal
area of the plot) and a general allometric equation
for the remaining species, as detailed in Lin et al.
(2012). All allometric equations are given in Lin
et al. (2012). AGC was estimated using the IPCC
conversion rate of 0.47 for biomass to carbon i.e.
biomass × 0.47 (IPCC 2006).

SOC was quantified by collecting soil samples
from the surface (0–10 cm) soil (Zhang et al.
2011). Sampling took place in July and August
2007 using a protocol similar to that of John
et al. (2007), which has been applied at numerous
CTFS-ForestGEO plots (Anderson-Teixeira et al.
2015). Specifically, we sampled soils across a reg-
ular grid of points every 30 m using a metal
cylinder (Zhang et al. 2011). In order to capture
variations in SOC at finer scales, two additional
samples were taken at 2, 5, or 15 m in a randomly
selected direction (N, NE, E, SE, etc.) from each
base point (Zhang et al. 2011). A total of 893 soil
samples were taken from the plot. Before C anal-
ysis, soil samples were air-dried, macroscopic
roots were removed, and samples were passed
through a 2 mm sieve. C concentration (g kg−1)
was determined by a titrimetric method using a
strong oxidizing agent (K2Cr2O7) in the presence
of H2SO4 (Walkley-Black method). The bulk den-
sity was assessed by means of 100 cm3 steel cores
taken from the place near the sampling points.
Samples were oven-dried (105 °C for 48 h) and
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bulk density was estimated as the mass of oven-
dry soil divided by the core volume. SOC stock
(Mg ha−1) was calculated for each individual soil
sample as follows:

SOC ¼ C � ρ� 1−að Þ �Δd� 0:1

whereC is organic C concentration (g kg−1), ρ is bulk
density (g cm−3), a is volumetric percentage of coarse
fragments (> 2 mm) in the soil (%),Δd is the thickness
of the soil layer (10 cm here), and the 0.1 multiplier
integrates multiple conversions such that units cancel.
SOC stock values for 20 × 20m quadrats were estimated
using geostatistical methods described in John et al.
(2007). Briefly, data were log-transformed to improve
the normality. We then performed a polynomial trend-
surface regression, which did not reveal a large spatial
trend in the data across the plot. Then, we fitted
variogram models to the empirical variograms, and ob-
tained spatial predictions for 5 × 5 m blocks using
ordinary kriging. Finally, we transformed the data back
to a linear scale. The analysis was conducted in GS +™
version 9.0 (GeoStatistics for the Environmental Sci-
ences, by Gamma design software). For 20 × 20 m
quadrats, the SOC stock was calculated as the mean
value of the 16 5 × 5 m blocks within each quadrat.

Environmental factors and stem density

As topography correlates with multiple aspects of the
physical environment that may influence C stocks in-
cluding soil fertility, drainage, and sunlight conditions,
we included four topographic variables in our analyses
(Table 1): relative elevation, slope, aspect and convex-
ity, calculated as in Legendre et al. (2009). Briefly,
relative elevation of a quadrat was calculated as the
mean of the relative elevation values at its four corners
(the lowest part of the 24-ha plot was set as 0 m). Slope
was calculated as the mean angular deviation from
horizontal of the four planes formed by connecting three
corners of a quadrat at a time. Aspect was measured as
the direction to which a slope faces. Finally, convexity
was calculated as the relative elevation of a quadrat
minus the average relative elevation of all immediate
neighbor quadrats, but for the edge quadrats, convexity
was the relative elevation of the quadrat minus the mean
relative elevation of its four corners.

Some quadrats in the high elevation ridge are ex-
tremely high in stem density possibly due to the small

scale disturbance in the past (Zhu et al. 2008). So, in
addition to the topographic variables, we also consid-
ered the tree stem density in the analysis (Table 1).

Quantifying CWM and FD

We selected six plant functional traits that could poten-
tially affect ecosystem C stock and for which published
data were available for our study plot (Cao et al. 2013;
Liu et al. 2012). These included wood density (WD, the
ratio of the oven-dried mass of a wood sample divided
by its fresh volume, g cm−3), the maximum height
typically attained by mature individuals of a species
(Hmax, m), and four leaf traits: leaf area (Aleaf, one-
sided area of an individual leaf, cm2), SLA (Aleaf divid-
ed by its oven-dry mass, cm2 g−1), leaf nitrogen content
(Nleaf, total amounts of nitrogen per unit of dry leaf
mass, %); and leaf phosphorus content (Pleaf, total
amounts of phosphorus per unit of dry leaf mass,
ppm). Measurement methods for these traits are detailed
in Cao et al. (2013) and Liu et al. (2012).

CWM of each functional trait was calculated for each
quadrat as the averaged trait value in the community
weighted by the species basal area (Pla et al. 2012). FD
was measured through three complementary multi-trait
indices: functional richness (FRic), functional evenness
(FEve) and functional divergence (FDiv). FRic shows
the amount of multivariate-trait space filled by the com-
munity, FEve denotes how species’ basal area is spread
over multivariate-trait space, and FDiv indicates the
degree of divergence from the center that most dominant
species occupy in multivariate-trait space (Villeger et al.
2008). All functional metrics were calculated using the
open-access software FDiversity, and in order to give
each trait equal weight, standard scores of trait values
were used in calculating multi-trait indices (Pla et al.
2012).

Statistical analysis

All analysis were conducted across 20 × 20 m quadrats.
Six quadrats with some obviously inaccurate DBHmea-
surements (e.g., understorey species with impossible
large DBH) were removed from the analyses. We used
boosted regression tree (BRT) analysis to assess the
relative importance of topographic variables, stem den-
sity, CWM and FD in shaping the spatial pattern of C
stocks. BRT is a machine learning-based technique that
combines two algorithms: regression trees and boosting,
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and it has been suggested as one of the best modeling
approaches to statistically describe the response of de-
pendent variables to multiple predictors (Elith et al.
2008). BRT has several advantages such as strength in
handling nonlinear relationships, robust to the effects of
outliers, missing data, autocorrelation and collinearity
among variables (De’ath 2007; Elith et al. 2008).

The four main parameters to optimize in BRTmodels
are the learning rate, bag fraction, tree complexity and
the number of cross-validation folds (Elith et al. 2008).
We fitted all BRT models using the recommended opti-
mal settings for ecological study, i.e. learning rate
(0.005), bag fraction (0.6) and 10-folds cross-validation
(Elith et al. 2008). For tree complexity, i.e. the number
of nodes in each tree, indicated the level of interactions
in BRT (e.g., a value of 2 permits up to two-way
interactions). We ran alternative models by setting tree
complexity as 1, 2, 3, 4, 5 and 6. In order to avoid over-
fitting, we selected to report the BRTmodel with a lower
tree complexity if the models with a higher tree com-
plexity did not reduce prediction error considerably (i.e.
< 5 %; Table S2). BRT analyses were run in R version

2.14.1 (R Development Core Team 2011) with the gbm
packages (Ridgeway 2010) and additional functions
provided by Elith et al. (2008). Models were fitted using
the Bgbm.step^ function and a Gaussian distribution of
the response variables (C stocks data were square-root
transformed to improve normality). We removed
CWM.Pleaf from BRT analyses because it shown strong
correlation with CWM.Nleaf (Spearman’s ρ = 0.81,
P < 0.001; Table S1). Because results from cross-
validation can vary according to the bag fraction and
depending on the random selection of points for the
folds, all of the procedure was repeated 30 times for
each model, and overall mean was calculated for the
prediction error, the optimal number of trees, R2 and
relative influence of the predictor variables (Table S2
and S3). Moreover, we tested for spatial autocorrelation
in the residuals of BRT models using Moran’s I statistic,
which did not prove to be significant (Table S4).

The relative influence of predictors were expressed
as percentages and the sums equal to 100 %, where a
higher number indicates a greater influence of the pre-
dictor on the response variable (Elith et al. 2008). Visu-
alization of the fitted functions in BRT models was
achieved using partial dependence plots, which show
how the model response is affected by focal predictor
after accounting for the average effects of all other
predictors in the model (Elith et al. 2008).

Results

Topographic variables, stem density, CWM and FD joint-
ly accounted for 73 and 76 % of variations in AGC and
SOC, respectively (Table S3). The relative influence of
the predictors on the two C stocks were different (Fig. 1;
Table S3). CWM traits had the highest and second-
highest summed relative influence on AGC and SOC,
respectively, whereas FD had the lowest relative influence
on both AGC and SOC (Fig. 1). CWM.WD and
CWM.Hmax were the first two most important predictors
for AGC, contributing 28.14 and 18.69% of the explained
variation, respectively (Fig. 1a; Table S3). Relative eleva-
tion and CWM.Hmax were the first two most important
predictors for SOC, contributing 32.82 and 15.91 % of the
explained variation, respectively (Fig. 1b; Table S3).

AGC decreased with CWM.WD up to values of
~0.6 g cm−3 and markedly increased with CWM.Hmax

between 15 to 28 m (Fig. 2a). AGC decreased slightly
with increasing CWM.SLA, while CWM.Aleaf and

Table 1 Mean and range of the predictors used for analysis of
carbon (C) stocks variation

Variables Mean Range

Stem density (trees ha−1) 8760 3100–33,725

Topographic variables

Relative elevation (m) 134.3 11.8–264.6

Slope (°) 37.4 12.8–62.0

Aspect (°) 177.4 93.9–269.2

Convexity (m) 0.22 −16.6 – 18.6

CWM variables

CWM.Nleaf (%) 1.26 1.14–1.74

CWM.Pleaf (ppm) 0.059 0.052–0.079

CWM.Aleaf (cm
2) 19.4 8.6–49.8

CWM.SLA (cm2 g−1) 110.0 91.7–142.4

CWM.WD (g cm−3) 0.56 0.51–0.72

CWM.Aleaf (m) 20.9 11.4–33.6

FD variables

FRic 22.1 0.4–116.5

FEve 0.40 0.15–0.63

FDiv 0.83 0.55–0.97

Abbreviations are: CWM, community-weighted mean; FD, func-
tional diversity; Nleaf, leaf nitrogen content, Pleaf, leaf phosphorus
content; SLA, specific leaf area; Aleaf, leaf area; WD, wood
density; Hmax, maximum potential tree height; FRic, functional
richness; FEve, functional evenness; FDiv, functional divergence
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CWM.Nleaf both contributed very little (<7.5 %) to the
explained variation (Fig. 2a; Table S3). AGC had no
meaningful relationship to FRic, FEve, or FDiv, each of
which contributed <3.5 % of the explained variation
(Fig. 3a; Table S3). AGC was at most weakly related
to each of the topographic variables, which contributed
≤5.5 % of the explained variation, and to stem density,
which contributed 7.8 % of the explained variation
(Fig. 4a; Table S3).

In contrast to AGC, SOC increased with CWM.WD
until CWM.WD > 0.62 g cm−3 and decreased with
CWM.Hmax between 15 and 25 m (Fig. 2b). SOC
weakly decreased with CWM.Nleaf and CWM.SLA,
and the association with CWM.Aleaf was negligible
(Fig. 2b; Table S3). Similar to AGC, SOC was at most
weakly associated with FRic, FEve, and FDiv, each of
which contributed <5.3 % of the explained variation
(Fig. 3b; Table S3). SOC decreased markedly with

relative elevation and was only weakly associated with
the other three topographic variables (each contributing
≤6.1 % of the explained variation) and with stem density
(which contributed 3.2 % of the explained variation;
Fig. 4b; Table S3).

Discussion

Our analysis parsed out how different ecological factors
shape the spatial pattern of C stocks within a typical
subtropical evergreen broad-leaved forest in China, re-
vealing that topographic factors and stem density have a
modest influences on AGC and an important role in
shaping SOC (Figs. 1 and 4). After controlling for these
factors, we found that C stocks were meaningfully in-
fluenced by CWM but not by FD (Figs. 1, 2 and 3),
supporting the mass ratio hypothesis, but leading no
support for the niche complementarity hypothesis in this
old-growth natural forest.

CWM effect on C stocks

Consistent with the prediction of mass ratio hypothesis
of Grime (1998), which suggesting that ecosystem func-
tioning was driven by the traits of the dominant species
in the community, BRT analyses showed that plant
functional trait effects were mostly attributed to CWM
for both AGC and SOC (Fig. 1). This result is in agree-
ment with findings reported in previous studies that
have found the traits of dominant species exerted large
effects on various aspects of ecosystem functioning,
such as nutrient cycling, biomass production and C
stocks (Garnier et al. 2004; Mokany et al. 2008; Conti
and Díaz 2013; Grigulis et al. 2013; Cavanaugh et al.
2014; Finegan et al. 2015; Prado-Junior et al. 2016).

CWM.WD and CWM.Hmax were the two most im-
portant variables for explaining AGC (Fig. 1a,
Table S3). Theoretically, species with higher WD have
a higher biomass per unit stem volume, thus leading to
higher stand C stock (Bunker et al. 2005; Chave et al.
2009). In contrast to this expectation, we found negative
association between CWM.WD and AGC (Fig. 2a), as
has also been observed in two tropical rainforest plots
(Stegen et al. 2009). The explanation may lie in the fact
that lower WD is associated with faster diameter growth
rates (e.g., Wright et al. 2010), leading to a negative
association between WD and basal area. Indeed, there
was a negative relationship between CWM.WD and

Fig. 1 Relative influence of environmental, CWM and FD vari-
ables on (a) aboveground C stocks and (b) topsoil organic C in the
boosted regression tree analysis. Pie charts show the summed
relative influences of topographic variables and stem density,
CWM and FD. Error bars show 95 % confidence intervals obtain-
ed from 1000 bootstrap samples of the original dataset (n = 30).
Variable abbreviations are given in Table 1 notes
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basal area in our study plot (Spearman’s ρ = − 0.58,
P < 0.001). This indicates that quadrats with higher
CWM.WD tended to be dominated by smaller trees with
higher WD, whereas quadrats including dominant can-
opy trees had higher biomass and lower CWM.WD. In

contrast with our result, Prado-Junior et al. (2016) re-
ported that CWM.WD positively related to above-
ground biomass in dry tropical forests, probably because
trees with higher WD growth better in the dry
environment.
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AGC increased markedly with CWM.Hmax (Fig. 2a),
suggesting that quadrats with a high percentage of can-
opy tree species tended to have high AGC. This result
agrees with several previous studies conducted in natu-
ral forests (Ruiz-Jaen and Potvin 2011; Conti and Díaz
2013; Finegan et al. 2015), and it makes sense that
quadrats with trees that can grow tall have higher bio-
mass. Although actual and maximum height differ,
mean community height can only be high if canopy
species are present.

Consistent with our expectations, SOC was positive-
ly associated with CWM.WD and negatively associated
with CWM of SLA and Nleaf (Fig. 2b), suggesting that
higher SOC was associated with tree community with
conservative plant trait values, i.e., low SLA, Nleaf and
highWD (Wright et al. 2004; Chave et al. 2009). This is
likely the result of slower litter decomposition rates of
species with conservative traits. This result is consistent
with theoretical predictions that nutrient and organic
matter turnover should be faster in communities domi-
nated by exploitative species (high SLA and Nleaf, low
WD) and, conversely, slower in communities dominated
by conservative species (low SLA and Nleaf, high WD;
De Deyn et al. 2008; Freschet et al. 2012). Consistent
with our result, in a boreal forest, plant community
composition shifts from faster-growing acquisitive spe-
cies to slower-growing conservative species, leading to

greater belowground C stocks (Jonsson and Wardle
2010). Similarly, many studies in grasslands found com-
munities dominated by conservative species contain
greater soil C than the communities dominated by ex-
ploitative species (e.g., Garnier et al. 2004; Grigulis
et al. 2013).

It has been reported that microhabitats dominated by
tall plants shed more plentiful litter, thereby tending to
have higher SOC (Lavorel et al. 2011; Conti and Díaz
2013). However, in contrast to what would be expected
if SOC increased with mean plant height, we found
negative association between CWM.Hmax and SOC
(Fig. 2b). One potential explanation is that soil microbial
activity is stimulated (Bprimed^) by the addition of large
quantities of fresh and easily decomposable organic
matter, thus resulting in extra decomposition of soil
organic matter (Fontaine et al. 2004; Sayer et al.
2011). Such a phenomenon has been observed in other
ecosystems, for example, in a large-scale litter manipu-
lation experiment, increased tree litter input enhanced
soil C release in a lowland tropical forest (Sayer
et al. 2011).

FD effect on C stocks

Based on the niche complementarity hypothesis, we
expected that quadrats with higher FD (higher FRic
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Fig. 4 Partial dependence plots showing how aboveground C
stocks (a) and topsoil organic C (b) depend on topographic vari-
ables and stem density after accounting for the average effects of

the other predictors in boosted regression tree analysis. Each point
represents observed value for one quadrat. Variable abbreviations
are given in Table 1 notes
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and FEve, lower FDiv) will have higher AGC and SOC;
however, this hypothesis was not supported. Rather, C
stocks were minimally influenced by FD variables
(Figs. 1 and 3; Table S3). This result is in agreement
with previous studies that did not find niche comple-
mentarity among tree species promoting C stocks in
natural forests (Conti and Díaz 2013; Finegan et al.
2015; Prado-junior et al. 2016).

Previous studies suggest that the mass ratio and niche
complementarity hypotheses are not mutually exclusive
both can play a role in structuring ecosystem function-
ing (Schumacher and Roscher 2009; Cavanaugh et al.
2014; Ruiz-Benito et al. 2014). It is possible that we did
not observed a niche complementarity effect because
functional traits that relate strongly to plant complemen-
tary resource use were not included in our analysis.
Obviously, detection of niche complementarity effects
requires inclusion of functional traits, the identification
of which is relatively difficult and strongly dependent on
prior knowledge (Petchey and Gaston 2006; Flynn et al.
2011). Further studies could consider incorporating
more traits such as tree crown structure and underground
root traits (e.g., Brassard et al. 2013; Jucker et al. 2015).
Alternatively, phylogenetic diversity could be consid-
ered in place of functional traits so long as the traits that
important to the focused ecosystem functioning are
phylogenetically conserved (Flynn et al. 2011;
Srivastava et al. 2012). In addition, although we have
considered four topographic variables and stem density
in the analyses, we still cannot rule out all possible
confounding factors which could possibly mask a rela-
tionship between FD and C stocks. Thus, while the
existence of a niche complementarity effect in this forest
cannot be ruled out, our analysis indicates that FD is
unlikely to be a dominant driver of C stocks.

Environmental factors effect on C stocks

We evaluated the role of four topographic variables and
stem density in driving forest C stocks. None of these
variables influenced ≥10 % of AGC, and only relative
elevation had a strong influence on SOC, contributing
33 % of the explained variation (Fig. 1; Table S3). Eleva-
tion plays a key role in determining the temperature and
moisture regime of any microsite (Griffiths et al.
2009), thereby affecting the SOC by changing the input
of litter via primary production and output of organic
material through soil mineralization. We found that
SOC was most strongly driven by elevation (Fig. 1b;

Table S3), decreasing markedly with relative elevation
(Fig. 4b). Multiple abiotic variables — including radia-
tion, wind exposure, soil moisture, and temperature —
commonly vary with elevation and may influence both
plant productivity and decomposition rates, and soil
carbon may be increased by either higher productivity
or lower decomposition at the lower elevations. In ad-
dition, litter and surface soil organic matter transfer from
higher to lower elevations through surface erosion and
movement of the soil mass could also lead to the nega-
tive correlation between SOC and elevation.

Conclusion

In summary, in this natural forests, the mass ratio hy-
pothesis provides a more appropriate framework for
explaining how tree functional traits shape C stocks than
the niche complementarity hypothesis, for which we
found no support. Our study also demonstrates that
AGC and SOC are shaped by different factors; plant
functional traits that lead to higher AGC do not neces-
sary promote accumulation of C in the soil. It is there-
fore important to disentangle the separate mechanisms
by which plant functional traits driving different
ecosystem-level C stocks.

A clear implication of our results is that it is important
to consider the traits of dominant species when managing
subtropical evergreen broad-leaved forest to maximize C
stocks. Specifically, traits associated with high wood
volume maximize AGC, while traits associated with
conservative growth strategies maximize SOC. These
findings may be useful for developing optimally effective
strategies to preserve and promote C sequestration in
forest ecosystems; however, it is also important that man-
agement strategies balance maximization of C stocks
against potentially conflicting ecosystem goods and ser-
vices including protection of biodiversity and resilience.
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