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Abstract.—According to the Janzen-Connell hypothesis for the maintenance of species diver-
sity, recruitment is inhibited in the immediate vicinity of adults by herbivores and pathogens.
This reduces the per capita ability of abundant species to reproduce, relative to less common
species, and gives rare or competitively inferior species a greater chance to persist. We tested
this hypothesis in a 50-ha mapped plot of tropical moist forest on Barro Colorado Island, Pan-
ama, by investigating the spatial patterns of sapling recruitment in 80 species of trees and shrubs.
Two censuses of adults and saplings were carried out, in 1982 and in 1985. Recruits were defined
as saplings of 1-8 cm dbh (diameter breast height) appearing in the 1985 census that were not
present in 1982. The distance from each recruit to its nearest conspecific adult neighbor was
measured. At various distances from adults, the number of conspecific recruits and the number
of recruits of all species were tallied. The ratio of recruits of species i to all recruits was taken
as an estimate of the probability that species i would occupy that site as an adult. A few species
showed a significant reduction in recruitment probability close to adults, but more species
showed a significant increase, and many other species showed no significant spatial pattern.
Among canopy trees, about a third of the species showed some sign of local reduction in
recruitment, but the distance over which the effect extended was usually less than 5 m; however,
the most abundant canopy tree, Trichilia tuberculata, showed a sharp reduction in recruitment
probability up to 10 m from adults. In treelets and shrubs. most species showed strong peaks
in recruitment probability close to adults. Thus, most recruitment patterns did not fit the predic-
tion of Janzen and Connell; however, two to three of the most common species may have
reached densities at which a depression in local recruitment is regulating abundance.

Understanding the maintenance of woody plant diversity in tropical forests
continues to pose a challenge to ecologists. The difficulty is not a lack of theories
to account for the maintenance of high diversity, because there are several, in-
cluding the regeneration niche hypothesis (Grubb 1977; Ricklefs 1977; Orians
1983), the intermediate disturbance hypothesis (Connell 1979), the resource heter-
ogeneity hypothesis (Tilman 1982), the lottery or storage hypothesis (Chesson and
Warner 1981), and the compensatory mortality hypothesis (Janzen 1970; Connell
1971). Each of these models postulates the existence of equilibrating forces that
maintain a particular species mixture. Alternative models, such as the gradual
climate change hypothesis (Connell 1978; Davis 1986) and the community drift
hypothesis (Hubbell 1979; Hubbell and Foster 1986a), posit that there are no
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equilibrium forces at work, or else that they are weak, but that rates of local
extinction by random walk are low and are balanced by speciation and immigra-
tion. All of these hypotheses have theoretical merit—each can account for the
coexistence of a large number of species—but data are not presently available to
determine which are important in any particular forest.

One goal of our research for the past several years has been to evaluate the
phenomenological evidence for one of these hypotheses in tropical moist forest
on Barro Colorado Island, Panama. We have focused on the Janzen-Connell
hypothesis of compensatory mortality (Janzen 1970; Connell 1971) because its
consequences should be played out explicitly in the spatial dynamics of the forest,
and its effects should be readily detected. Janzen and Connell proposed that
species-specific predators inflict more mortality on seeds and seedlings near
adults than at greater distances. This might be true if the predators show a numeri-
cal response to the high density of seeds or seedlings close to adults or if they
become abundant on the foliage of adults and then discover the seedlings nearby.
This hypothesis has been expanded to include other lethal agents of seeds and
seedlings, notably parasites and pathogens (Augspurger 1983a, 1983b; Kitajima
and Augspurger 1989). Howe and Smallwood (1982) called this the ‘‘escape hy-
pothesis.”” Both Janzen and Connell recognized that this escape phenomenon
could maintain diversity by preventing any one tree species from dominating the
forest. If juvenile mortality near adults were high enough, then new recruitment
could only occur at some distance from adults. As the abundance of one species
increased, a smaller area of forest would remain for recruitment. Species would
coexist because less common species enjoyed a frequency-dependent recruitment
advantage.

Rigorous theoretical studies have demonstrated that the inhibition of recruit-
ment near conspecific adults can diversify a community (Hubbell 1980; Leigh
1982, 1990; Becker et al. 1985; Armstrong 1989), but there have been few data to
test the proposal. Most empirical studies have considered seedling mortality in
only a single species from a highly diverse community (Connell 1971; Augspurger
1983a, 1983b, 1984; Wright 1983; Clark and Clark 1984; Schupp 1988). Only Con-
nell et al. (1984) considered many species within a community and searched for
effects beyond the seedling stage. No one to date has quantified the probability
of one species’ recruiting into the canopy at various distances from conspecific
adults in a manner that has been used in other contexts (Horn 1975; Hubbell and
Foster 1985). Quantitative estimates of recruitment probabilities are the parame-
ters needed in theoretical community analyses.

Here we examine the Janzen-Connell model at a community level by estimating
recruitment probabilities of individual species relative to the rest of the commu-
nity. We describe the spatial pattern of recruitment probabilities in 80 species of
trees and shrubs that comprise over 90% of the stems in a neotropical forest. We
address the following questions: How many species show the Janzen-Connell
effect? In those that do, what is the magnitude of the reduction in recruitment
close to conspecific adults, and how far does the reduction extend? Are the
observed reductions in recruitment sufficient to limit the abundance of popula-
tions and thus contribute to the maintenance of species diversity?
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Fic. l.—Theoretical recruitment curves, showing recruitment of a focal species (divided
by that of all species) on the vertical axis and distance to the nearest conspecific adult on
the horizontal. Units are arbitrary.

OVERVIEW OF THE THEORY AND ANALYSIS

To assess the effect of proximity to adults on recruitment probability, we begin
by defining recruits as plants that enter the size class of 1 cm dbh (diameter breast
height) during a 3-yr time interval. The recruitment probability of species i in a
given area is estimated by dividing the recruits of species i by the total number
of recruits in that area. We assume that this ratio is an index of (or proportional
to) the probability that species i will eventually occupy that site as an adult. The
index is calculated at various distances from adults of species i and repeated for
many species. Janzen and Connell’s prediction was that many species would
show reduced recruitment probabilities close to adults.

Hypothetical recruitment curves are illustrated in figure 1. Figure 1A shows
what might result with limited seed dispersal and no excess mortality close to
adults, while figure 1B shows the result of a strong Janzen-Connell effect. Previ-
ous analyses have assumed that the latter curve is necessary for a population to
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be limited by Janzen-Connell effects and thus for diversity to be maintained. As
has been pointed out (Hubbell 1979), however, curve 1A could result from limited
dispersal combined with moderate excess mortality close to adults (if the excess
mortality were insufficient to counteract the shape of the dispersal curve). It is
thus possible for a population showing type 1A recruitment to be limited by
Janzen-Connell effects. This can be seen by considering basic population
dynamics—excess mortality close to adults will translate into density-dependent
mortality, and any density dependence, no matter how slight, can regulate a
population.

Nevertheless, our analysis will address the explicit prediction made by Janzen
(1970) and repeated since that recruitment probability will actually be depressed
near conspecific adults. Populations showing depression in recruitment will pro-
vide the strongest evidence that Janzen-Connell effects are contributing to species
diversity. Moreover, quantitative estimates of recruitment probability are neces-
sary parameters for the theoretical studies that will be needed to determine once
and for all the importance of Janzen-Connell effects in limiting species’ abun-
dances.

Much of the theoretical discussion of the Janzen-Connell hypothesis assumes
that the shapes of these recruitment curves are density-independent, but this may
not be the case. A species might have a curve shaped like case 1A when rare
but like case 1B when common. This is equivalent to saying that recruitment
probabilities depend not only on distance to the nearest adult but also on the
local or regional density of adult trees over larger spatial scales. Our analysis is
based on one site, so we cannot examine regional density as a variable; however,
we can address this issue by determining whether abundant species are more
likely to suffer from Janzen-Connell effects than uncommon species within the
study site.

These curves leave open the definition of a recruit. In the present analysis,
recruits are saplings entering the 1-8-cm-dbh size class. An ideal study of recruit-
ment probabilities would estimate recruitment into adult size classes, but we still
lack sufficient time and sample sizes to use adult size classes. Plants above 1 cm
dbh have already passed through the seed and seedling stages, during which most
mortality occurs, so recruitment into the 1-cm class is probably a good indicator
of recruitment probability into adult classes.

Our analysis of spatial patterns of recruitment and their importance in the
coexistence of species is an improvement over previous analyses in several ways.
First, we make quantitative estimates of recruitment probabilities by considering
recruitment of a focal species relative to that of all other species. Previous studies
considered species in isolation from one another (Connell 1971; Augspurger
1983a, 1983b, 1984; Wright 1983; Clark and Clark 1984; Schupp 1988). This is
crucial, because the outcome of interspecific competition is ignored in single-
species analyses, and it is this outcome that determines species composition.
Second, we examine distance dependence in sapling recruitment, not in the static
distribution of saplings (as in Hubbell 1979; Hubbell and Foster 1986a). The
dynamic process of recruitment is ultimately what determines the ability of a
species to persist in a community. The static distribution and abundance of sap-
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lings can be considered an index of recruitment, but horizontal data are preferable
when available. Finally, we analyze a larger percentage of species in a forest than
most previous studies. Only Connell et al. (1984) studied a substantial fraction of
the species within a community.

MATERIALS AND METHODS

The study was carried out in tropical moist forest on Barro Colorado Island
(BCI) in central Panama. Detailed descriptions of the climate, flora, and fauna of
BCI can be found in Croat (1978) and Leigh et al. (1982). Two censuses of 50 ha
of forest were carried out, first in 1982 and again in 1985 (Hubbell and Foster
1985, 1986b, 1990). All free-standing woody stems of at least 1 cm dbh in a 1.0
x 0.5-km plot were identified, tagged, and mapped.

We define a recruit as any stem of at least 1 cm and less than 8 cm dbh in 1985
that was not included in the 1982 inventory and was therefore less than 1 cm dbh.
A few stems over 8 cm dbh appeared for the first time in 1985, but these were
excluded on the likelihood that they were not truly recruits but were missed in
1982. There was a total of 33,126 new plants in the 1985 census, of which 33,023
(99.7%) were less than 8 cm and thus defined as recruits. For even the fastest-
growing species (such as Cecropia insignis and Croton billbergianus), more than
95% of recruits were less than 8 cm dbh, so our results cannot be biased by this
upper limit. Of the total of 304 species recorded in the plot, 242 had recruits in
1985, but the present analysis is limited to 80 species that had more than 50
recruits. Although representing less than a third of all species in the plot, these
80 species made up 94% of all individuals over 1 cm dbh (227,507 of 242,390
alive in 1985). Species were divided into four growth forms: shrubs, treelets,
medium-sized trees, and large trees, based on height of the adult plant (Hubbell
and Foster 1986b).

We assess recruitment at various distances from large conspecifics. To simplify
terminology, we will refer to large conspecifics as ‘“‘adults,”” not intending,
though, to imply reproductive maturity. For large tree species, adults were all
stems of at least 20 cm dbh in 1982. For medium-sized trees, treelets, and shrubs,
the size limits were 10 cm, 4 cm, and 1 cm, respectively. These cutoffs were
chosen by examining dbh-frequency distributions for species with 50 or more
recruits, then choosing the largest dbh that would provide a sample of at least 25
adults for all species. (Some species with 50 recruits or more were excluded from
the analysis because there were too few adults.) In addition, for 17 species with
large sample sizes, analyses were repeated with larger dbh cutoffs in the definition
of adulthood: 30 cm dbh for large trees, 20 cm for mid-sized trees, 8 cm for
treelets, and 4 cm for shrubs.

For each 1985 recruit in the plot, the nearest conspecific adult that was present
in 1982 was located, and the distance between recruit and adult was calculated
from the coordinates of the center of each plant. Any recruit that was closer to
a boundary of the plot than to its nearest adult neighbor was excluded from
further analysis, since it was possible that a closer adult was located immediately
outside the plot. (This latter restriction forced the sample sizes below 50 recruits
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and 25 adults for a few species.) Distances were combined into discrete intervals
for tallying recruit distributions. The same intervals were used for every species
of one growth form; intervals are presented in the tables of results.

Four distributions were calculated for each of the 80 species included in the
final analysis:

1. The distribution of recruitment in the focal species. This is the number of
recruits of species i in each distance class d from the nearest conspecific
adult and is symbolized S;;. The total number of recruits of species i is =5,
(all summation signs designate a sum over distance).

2. A distribution of competing recruits. This is all recruits in the plot at various
distances from the nearest adult of the focal species i. Call this distribution
A,, For all 80 species, A;; was constructed from the same set of recruits,
but the shape of the distribution differs among species because the distances
were calculated to a different group of adults (hence the subscript i must be
included). The sum of A, differs slightly for different species because re-
cruits were excluded if closer to a boundary than to the nearest adult of
species i.

3. An expected distribution of recruits of the focal species. This was defined
as A;; normalized to the total number of recruits of species i. It is designated
E, with E; = A,;ZS8,,/2A,,

4. The distribution of a normalized index of recruitment probability for the
focal species. This is R,; = S,,/E,;, or the ratio of the abundance of recruits
of the focal species to the expected abundance. If R;; > 1 (S, > E,,;), recruits
of the focal species were overrepresented at distance d; that is, recruits of
the focal species were more abundant than they would have been if their
distribution had been identical to that of all recruits combined.

In the denominator of R,;, we use the distribution of all recruits recorded in
the plot. This is meant to represent potential competitors for space. There are
other possible definitions of competitors. One alternative would include only re-
cruits of the same growth form (tree, treelet, or shrub). We did not choose this
because saplings of tree species compete with saplings of shrub species, and vice
versa. Another definition would include all saplings of 1-8 cm dbh as competitors
regardless of whether they had recruited in 1985. We also rejected this approach
because, as explained above, a dynamic measure like recruitment is a better
indicator of community dynamics. Nevertheless, to test how robust the conclu-
sions were, we repeated the entire analysis using the first of the two alternatives
just mentioned. The results were essentially identical to those about to be pre-
sented.

The distribution of a focal species’ recruits, S,;,, was compared to the distribu-
tion of all recruits, A,,, with a x? test. Each x? value was generated from a 2 X
2 contingency table based on two categorical variables—distance (within one
distance class vs. without) and species (i vs. all others)—and has 1 df. There
were 12 x? tests for each species because there were 12 distance intervals. Chi-
square tests were not used when any of the four expected values was less than
1.0 (Snedecor and Cochran 1980).

To test whether common species had different recruitment patterns than un-
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common ones, we placed species in high- and low-abundance groups—those
above the median adult abundance for their growth form and those below. Quali-
tative recruitment patterns (defined in Results) were summed for each group, and
a comparison was done with a x? test.

It is important to emphasize that a recruit distribution curve (S;;) will have a
peak at an intermediate distance even when adults and recruits are randomly and
independently distributed (fig. 2). Initially, S;, increases because of the expanding
area of larger annular rings. At greater distances, S,; must decline because rings
around one adult tree overlap those around another, and some other tree is now
the nearest adult (fig. 24). Our method for measuring recruit abundance at various
distances from adults is similar to that described by Hamill and Wright (1986),
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but they plotted a cumulative abundance curve rather than abundance in distance
intervals.

RESULTS

The distribution of recruits at various distances from adults is illustrated for
one common, medium-sized tree, Guarea guidonia (abbreviated GUA?2 in the
tables and Appendices; fig. 3). Figure 3A shows the number of observed and
expected recruits in 12 distance classes (S;, and E;;). Both observed and expected
curves peak in the middle, as expected for ‘‘random’’ distributions (fig. 2). The
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distribution of observed recruits is indistinguishable from expected, which means
that Guarea recruits and heterospecific recruits had the same distribution around
Guarea adults. Plotting the ratio of observed to expected recruits (fig. 3B) gives
a flat curve, except beyond 40 m, where samples were small. In Appendices A-D
we present the observed and expected numbers of recruits for all 80 species in
12 distance segments from conspecific adults.

Tables 1-4 summarize the x° tests for all 80 species, grouped by similar growth
form. Pluses indicate that there were more conspecific recruits than expected at
a given distance, which means that there were more recruits than expected if
conspecific and heterospecific recruits had been distributed identically. Minuses
indicate fewer observed than expected. Significance is indicated by two or three
pluses or minuses, for the 5% and 1% levels, respectively. For G. guidonia, there
were no significant tests.

In all 80 species combined, there are 99 *“ + + +°’ and 33 ‘*“* — — —’ entries at
distances less than 20 m from adults, and there are 19 “*+ + +”’ and 57 *“* — — =’
entries at distances greater than 20 m. Thus, recruits generally appear to be
attracted to conspecific adults, being closer than heterospecific recruits (see be-
low). The distance at which ““+ + +’ signs give way to *‘— — —’’ signs varies
from species to species, but there are general patterns when the data are con-
sidered as a whole. In large trees, pluses switch to minuses 20-30 m from
adults, in medium-sized trees at 10-30 m, in treelets at 5-25 m, and in shrubs
at 3-10 m.

In contrast to the overall pattern, there are a few species showing clearly
repelled patterns, with conspecific recruits significantly underrepresented imme-
diately adjacent to adults. In these species, *“ — — —’ signs generally appear only
in the closest distance intervals, within 5 m of adults.

In an effort to summarize the data in tables 1-4, we classified species into four
recruitment syndromes. The first we call an ‘‘attracted’’ syndrome, indicated by
a significant excess of recruits in the closest distance intervals and a significant
deficit of recruits farther from adults. Figure 4 illustrates recruit distributions for
species showing attracted syndromes: Prioria copaifera (PRIC), a large, moder-
ately common tree, and Quararibea asterolepis (QUAL), a large, common tree.
The second syndrome is called ‘‘repelled’’ and is indicated by a significant deficit
of recruits near adults and significant excess at some greater distance. Figure 5
illustrates repelled patterns in Trichilia tuberculata (TRI3) and Alseis blackiana
(ALSB), both large, common tree species.

The third recruitment pattern we call *‘partially repelled.’’ This includes species
that showed a peak in their recruitment probability curve at some intermediate
distance from adults but did not have a significant deficit of recruits close to
adults. This can be clearly seen in Beilschmiedia pendula (BEIP), a large and
common tree, and Guatteria dumetorum (GUAD), a large and moderately com-
mon tree (fig. 6). In practice, as we discuss below, this pattern can be hard to
distinguish because sample sizes close to adults were often small.

The last recruitment syndrome is ‘‘no pattern.”” These were species that
showed two or fewer significant x? tests and no clear trends in pluses or minuses
in tables 1-4. One species, Zanthoxylum belizense (ZANB), an uncommon, large
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Fi16. 4.—Same as fig. 3B for attracted patterns of recruitment probability. A, Prioria copaif-
era; B, Quararibea asterolepis. Filled circles indicate that the recruit distribution of the
target species was significantly different from that of all species combined, at the 5% level.

tree, showed a pattern different from any other, with fewer recruits than expected
at intermediate distances and more than expected far from adults. Since no other
species showed this pattern, Zanthoxylum was placed in the no-pattern group.
At the far right of tables 1-4, qualitative recruit syndromes are listed for each
species. There are a few examples for which species could have been placed in
either of two categories. For example, Lonchocarpus latifolia (LONL; table 1)
appears to have a partially repelled pattern but was placed in the attracted group
owing to the high (but nonsignificant) ratio of observed to expected recruits in
the 0-5-m distance interval (three observed, 1.2 expected). Poulsenia armata
(POUA; table 1) had a nearly identical pattern of x2 results, but the ratio at 0—5
m was 4:3.2, so we classify it as partially repelled. Several species of treelets
and shrubs did not have x? tests done at the closest distance intervals because
expected values were below 1.0, but they were still given attracted syndromes
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Fic. 5.—Same as fig. 3B for repelled patterns of recruitment probability. A, Alseis blacki-
ana; B, Trichilia tuberculata.

because of very high observed-to-expected ratios (e.g., 28:0.3 in Bactris major
[BACM]; table 3). Despite potential quibbles with individual cases, we can
quickly summarize community-wide patterns using this classification system. We
provide all observed and expected values in Appendices A-D, so readers can
check each classification.

Table 5 gives a tally of species showing the four recruitment syndromes. The
number of species showing attracted patterns is higher than those showing re-
pelled or even repelled plus partially repelled patterns. There is a tendency for
larger growth forms to show more examples of repulsion (table 5).

In 16 of 17 species, the recruit pattern shown in tables 1-4 remained unchanged
when the adult class was redefined with a larger size cutoff (these species are
marked in tables 1-4). For example, in Alseis and Trichilia, recruits were signifi-
cantly repelled by 20- to 30-cm adults and >30-cm adults. The one exception out
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Fi16. 6.—Same as fig. 3B for partially repelled patterns of recruitment probability. A,
Beilschmiedia pendula; B, Guatteria dumetorum.

of 17 was Hybanthus prunifolius (HYBP), an abundant shrub whose recruits
showed a strong attraction pattern relative to 1- to 2- and 2- to 4-cm conspecifics
but significant repulsion from >4-cm adults; this repulsion extended 0-2 m from
adults. Thus, the results in table 4 for Hybanthus mask a repelled pattern relative
to the largest conspecifics.

In eight of nine species of trees and treelets, recruitment patterns remained
unchanged when 2 tests were repeated in 1-m distance intervals out to S m (these
species are also marked in tables 1-4). The exception was Faramea occidentalis
(FARO), an abundant treelet for which a partially repelled pattern gave way to a
repelled pattern when shorter distance intervals were used. Faramea showed a
significant deficit of recruits 0—1 m from adults but slight excess recruitment from
1-2.5 m. The results in table 3 thus mask a fully repelled pattern in Faramea.

There is an indication that species abundance was related to recruitment pat-
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TABLE 5

NUMBER OF SPECIES SHOWING VARIOUS PATTERNS OF RECRUIT DISTRIBUTION WITH RESPECT TO THE
NEAREST CONSPECIFIC ADULT

TREES

RECRUIT DISTRIBUTION SHRUBS Small Medium Large TortaL
Attracted pattern 12 6 4 S 27
Repelled pattern 0 1 2 3 6
Partially repelled pattern 1 1 2 5 9
No pattern 2 11 15 10 38
Proportion of species repelled

or partially repelled .07 .11 17 .35 .19

Note.—The proportion of species showing a repelled or partially repelled distribution is greater
among large trees than among the other three groups combined (c> = 5.4, df = 1, P < .05).

tern. Of six repelled patterns that were found (table 5), four were from the most
abundant species in the plot: the two most common canopy trees, Trichilia and
Alseis, the most common medium-sized tree, Hirtella triandra (HIRT), and the
second most common treelet, Desmopsis panamensis (DESP). In addition, the
most abundant treelet, Faramea, and the most abundant shrub, Hybanthus,
showed repulsion when analyses were extended to shorter distances or larger
conspecifics. When all species were split into high- and low-abundance groups,
however, there was no significant tendency. The high-abundance group included
11 repelled/partially repelled and 13 attracted recruitment patterns, while the low
abundance group had 3 repelled/partially repelled and 12 attracted species.

DISCUSSION

A number of species in the BCI forest showed a reduction in recruitment
probability in the vicinity of large conspecifics, but this was not a universal phe-
nomenon. More species showed peaks in recruitment probability immediately
adjacent to large conspecifics, especially among shrubs and small trees. The
largest number of species showed no clear pattern. We thus reject the prediction
of the Janzen-Connell hypothesis that reduction in recruitment probability near
adults is a community-wide phenomenon.

We arrive at this conclusion despite being as liberal as we could in our designa-
tion of Janzen-Connell spacing of recruits. Even including the partially repelled
recruitment patterns as evidence for a Janzen-Connell pattern, which is statisti-
cally not easily defensible, we still found that more species showed attracted
patterns than repelled. Among large trees there were more repelled than attracted,
but there were also more species showing no pattern at all.

One potential limitation of our analysis is the small sample sizes in distance
intervals closest to adults, where one would be most likely to see a reduction in
recruitment probability. It is possible that several of the species we classified
as having ‘‘no pattern,”’ such as Brosimum alicastrum (BROA), Calophyllum
longifolium (CAL2), or Chrysophyllum panamense (CHRP), actually would show
significant deficits in recruitment if larger samples were available. Even though
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these and other species had zero recruits observed in the 0—5-m distance class,
the number expected was too small for any conclusion.

There is nothing we can do to strengthen our conclusions about the shortest
distance classes, but we have more data at intermediate distances. In the range
of 5-20 m, where sample sizes were much larger, few species showed any evi-
dence for repulsion. Only two species, Trichilia tuberculata and Eugenia oer-
stedeana (EUGO), showed indisputable repulsion beyond 5 m. Thus, we con-
clude that, for the majority of species, there was either no local reduction in
recruitment probability or a reduction extending approximately one crown radius
or less. The potential diversifying influence of such short inhibition distances is
minimal. If inhibition extends only one crown radius, theoretical communities of
hexagonally packed tree crowns maintain only three species (Hubbell 1980).

Local inhibition of recruitment might have appeared in more species if narrower
distance intervals or larger adult size classes had been used. We anticipated this
concern by reanalyzing a number of abundant species using various distance and
size classes, and generally these results paralleled those from the first analysis.
For less common species, reanalysis was not possible, and of course there were
a large number of species too rare to analyze at all. We cannot know whether
rare species are limited by strong Janzen-Connell effects; however, our data
suggest that this is unlikely. It was abundant species that showed repelled recruit-
ment patterns much more often than uncommon species.

A major problem with observational evidence for neighborhood effects is that
they can be masked by environmental heterogeneity (Fowler 1988). For example,
consider a hypothetical species that occurs only in the 2-ha swamp in the center
of the 50-ha plot on BCI. Within the swamp, it suffers strong density dependence
in recruitment, with recruits avoiding conspecific adults. On the scale of the
swamp, this would be reflected in the recruitment distribution, but on the scale
of the entire plot, recruits would appear much closer to adults than one would
expect. We doubt, however, that habitat heterogeneity accounts for the prepon-
derance of attracted recruit distributions we found, because the 50-ha plot is a
fairly uniform environment (apart from the swamp). Most species analyzed occur
widely across all 50 ha and show no association with topographic features. Hub-
bell and Foster (1986b) argued that most species in the plot are habitat generalists.
Another reason for doubting that habitat patchiness obscured density dependence
is that trees are quite long-lived. Local conditions that account for apparent
aggregation patterns must persist for longer than the life span of a tree. Light
gaps and other transient disturbances would not qualify. Nevertheless, in the
absence of experimental manipulations, we must acknowledge that habitat hetero-
geneity that we have not detected could be a problem in drawing conclusions
about neighborhood effects on recruitment.

Our intention here has been to document spatial patterns of recruitment proba-
bilities and to measure the pervasiveness of local inhibition in a community. We
do not yet know what mechanisms created the observed patterns. Recruitment
probability at various distances from adults was presumably the result of limited
seed dispersal counteracted to varying degrees by heavy mortality close to adults.
Other factors that might affect recruitment patterns include vegetative reproduc-
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tion, which would tend to create attracted syndromes; local conditioning of habi-
tat by adults to favor growth of conspecifics, which would also lead to attracted
syndromes; and preference for light gaps on the part of recruits, which might lead
to repelled syndromes. We doubt that gap preference is a general explanation for
repelled syndromes, because most species recruited preferentially in light gaps
(Welden et al. 1991), and we considered recruitment probability of each target
species relative to all other species. The repulsion effects we documented were
probably caused by seed predators, herbivores, or pathogens (Janzen 1970; Con-
nell 1971; Augspurger 1983a, 1983b, 1984; Wright 1983; Clark and Clark 1984).
Whether the effects were caused by density-dependent mortality, with predators
responding to a high density of juveniles, or distance-dependent mortality, with
predators responding to the proximity of adults (Connell et al. 1984), we cannot
say.

The ultimate goal of community-level studies of the Janzen-Connell hypothesis
is to determine whether tropical forest diversity is maintained by biotic factors
that regulate population densities. Neighborhood effects on recruitment are one
such factor that would create density dependence, and effects documented here
provide signatures of this density dependence. Are the effects strong enough to
regulate populations at current densities? A number of the most common species
on BCI showed very strong reductions in recruitment probability close to adults,
and we show elsewhere that some of these may in fact be regulated by neighbor-
hood effects. We (Hubbell et al. 1990) used a population model incorporating
neighborhood effects on recruitment to show that Trichilia tuberculata, the most
common canopy tree on the plot, has a population density very close to a carrying
capacity set by neighborhood effects. Thus, the general pattern emerging is that
the most abundant species suffer the strongest neighborhood effects and that
these are the only species likely to be regulated by density-dependent factors.

As noted earlier, though, weak neighborhood effects can contribute to the
maintenance of diversity, and it is possible that density dependence is occurring
on spatial scales outside the scope of our studies. Thus, we cannot yet reject the
possibility that density-dependent factors are currently regulating even the rarest
species in the forest. Moreover, we have restricted our attention to an equilibrium
model of the forest, and neighborhood effects could maintain diversity in a non-
equilibrium community, not by setting carrying capacities but by slowing the rise
to dominance of strong competitors (Huston 1979; Becker et al. 1985). It is ironic
that, in a nonequilibrium model, attracted recruitment syndromes might help
maintain species diversity by allowing competitively inferior species to hold onto
their canopy sites by flooding the local vicinity with recruits. Thus, it is not
immediately obvious what sorts of recruitment curves would tend to enhance
diversity in a nonequilibrium community. More work is needed in this area.

Our analysis of 80 species shows that the Janzen-Connell effect can be demon-
strated by measuring recruitment probabilities quantitatively. Only a minority of
the species, however, suffered a clear reduction in recruitment near adults. It
appears plausible that a few common species in the BCI forest actually have
population densities limited by neighborhood effects on recruitment. Although
we cannot dismiss the possibility, we believe that most species are probably not
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so regulated. If not, we do not yet know what limits the abundance of these
species, and most of the tree diversity of the BCI forest must be accounted for
by other hypotheses.
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