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The goal is to describe completely the probability of all future population states, given the 

current population N0, a time interval t, and descriptions of mortality and recruitment (= birth) 

processes. Call the desired probability distribution )(Np  for all N. 

Survival can be modeled as a binomial process, so the probability g of observing S survivors 

at time t is 
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given θ  as the per capita annual survival probability over the interval t (t is an arbitrary positive 

number, ],[ 10∈θ , N and S are positive integers with NS ≤ ). In the binomial model, extending 

an annual survival probability into the future is obvious: tθ  is the survival probability after t 

years. A binomial model of survival is routinely used and widely accepted; it requires the 

assumption that all individuals are identical and have identical survival probability. 

Recruitment is modeled as a Poisson process, so the probability h of observing R recruits at 

time t is 
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where tπ  is the per capita recruitment, or the expected number of offspring produced per 

individual, after t years. Unlike the binomial description of mortality, converting an annual 

recruitment rate π  to a t-year recruitment probability, tπ , is convoluted:  



 











−






 += 11

t
t

t θ
πθπ ,  Eq. 3 

where π  is the annual per capita recruitment. The unfortunate aspect is that the survival rate, θ , 

is involved, but this is necessary because recruits are dying throughout the interval t, and the goal 

is to define the recruitment rate as a function of N0, the number alive at the start of the interval.  

In real biological situations, the Poisson model of birth or recruitment is not straightforward 

to justify, at least compared to the binomial model of survival. In mammals and birds, where few 

offspring are produced at any one time and many survive, it makes good sense to model clutch or 

litter size as Poisson. But in organisms where large numbers of small seeds or larvae are 

produced and few recruit to a countable size, the Poisson description is not so clear. 

Nevertheless, it has the advantage of being simple, and I don’t see a better alternative. 

Accepting the binomial description, )(Sg , of survival and the Poisson, )(Rh , of recruitment, 

the goal is to write down the probability distribution )(Np  for each future population state. This 

is 
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where the summation is over integers ],[ N0x∈  if 0NN ≤ , or ],[ NNNx 0−∈  if 0NN > .  In 

words, the population will be N if there are 0 recruits and N survivors or if there is 1 recruit and 

1N −  survivors or if there are 2 recruits and 2N −  survivors, etc.  

I can’t simplify the summation in Equation 4 after substituting Equations 1 and 2. But it can 

be calculated numerically, as in this R function 

(http://ctfs.si.edu/onlinepub/popbiology/ProbOfAbund.r); this produces exact probabilities. 

Equations 1 and 2 can also be simulated easily in R by drawing random samples on Poisson and 



binomial variables (rpois and rbinom); summing the two random draws produces a random draw 

on )(Np . Both approaches indicate that )(Np  is symmetrical and bell-shaped, so I fit normal 

distributions to the results of the exact probabilities (Eq. 4).  

This produced a surprisingly simple result: 
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That is, )(Np  is normally distributed with mean equal to 0N  times recruitment plus survival (π  

and θ ) and variance equal to 0N  times 2θθπ −+ .  This is general, for any future time t, as 

long as π  and θ  indicate t-year recruitment and survival probabilities. I tested this over a 

reasonably wide range of 0N , π , and θ , and the fit is remarkably precise, even at 1N = . But I 

have not gone beyond proof by simulation; it would be interesting to see a general proof. 

The neutral theory is a special case, with θπ −= 1 , in other words, where recruitment 

balances mortality (since mortality is θ−1 ). In this circumstance, the mean of the probability 

distributions for recruitment and mortality are equal. Furthermore, it can be shown from 

Equation 3 that if θπ −= 1  after one year, then t
t 1 θπ −=  at any time in the future. In other 

words, given θπ −= 1 , then the mean of 0NNp =)(  for all times t; the population is neutrally 

stable. The variance is ( )t2
0 1N θ− , which approaches 0N  in the limit. There are caveats, 

though, relative to Hubbell’s description of a neutral community: this formulation does not 

incorporate the zero-sum assumption across the community, and extinction and fixation 

invalidate the prediction far enough into the future.  

 

  


